

Deep Reinforcement Learning for Power Grid Operations ENERGY 2020 Tutorial

Eric MSP Veith <eric.veith@offis.de>

Motivation

Motivation

Why more AI in the Power Grid?

> Power prid operations increase in complexity

- > More DERs
- > New market concepts, e.g., local markets
- > Anciallary services also from DERs, also market-based
- > AI technologies already widespread
 - > Forecasting
 - > Multi-Agent Systems (mostly rule-based)
 - > Distributed heuristics (e.g., schedule planning)
- > Resilience: Reaction for the "unknown unknowns"
- > Bottom line: Dynamic strategy development needed; Deep Reinforcement Learning (DRL) is the next meta-level

A Gentle Introduction to Reinforcement Learning

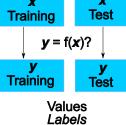
About *Reinforcement Learning* DRL in Relation to other Terms in Deep Learning

- > Model-based Learning: ANN develops problem model (vs. Instance-based Learning)
- > Supervised Learning
 - > Classification
 - > Regression
- > Unsupervised Learning
 - > Clustering
- > Reinforcement Learning

About Reinforcement Learning

DRL in Relation to other Terms in Deep Learning

- > Supervised Learning
 - > Classification
 - > Regression
- > Unsupervised Learning
 - > Clustering
- > Reinforcement Learning



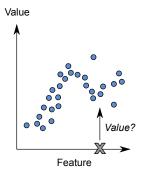
- > Supervised Learning
 - > Classification
 - > Regression
- > Unsupervised Learning
 - > Clustering
- > Reinforcement Learning

About *Reinforcement Learning* DRL in Relation to other Terms in Deep Learning

About Reinforcement Learning

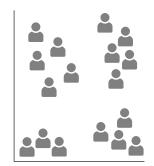
DRL in Relation to other Terms in Deep Learning

- > Supervised Learning
 - > Classification
 - > Regression
- > Unsupervised Learning
 - > Clustering
- > Reinforcement Learning



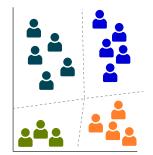
About *Reinforcement Learning* DRL in Relation to other Terms in Deep Learning

- > Model-based Learning: ANN develops problem model (vs. Instance-based Learning)
- > Supervised Learning
 - > Classification
 - > Regression
- > Unsupervised Learning
 - > Clustering
- > Reinforcement Learning



About *Reinforcement Learning* DRL in Relation to other Terms in Deep Learning

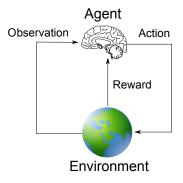
- > Model-based Learning: ANN develops problem model (vs. Instance-based Learning)
- > Supervised Learning
 - > Classification
 - > Regression
- > Unsupervised Learning
 - > Clustering
- > Reinforcement Learning

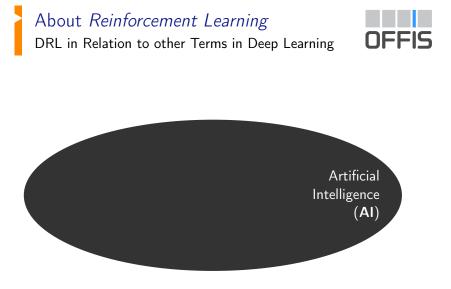


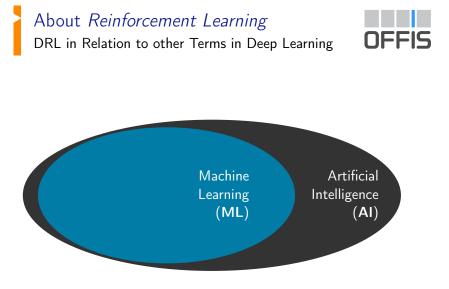
About Reinforcement Learning

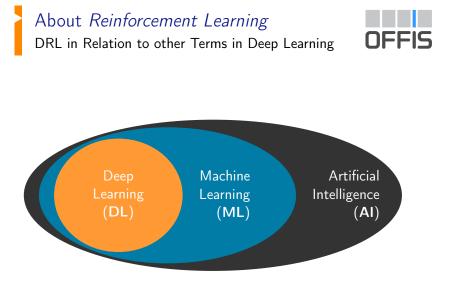
DRL in Relation to other Terms in Deep Learning

- > Supervised Learning
 - > Classification
 - > Regression
- > Unsupervised Learning
 - > Clustering
- > Reinforcement Learning

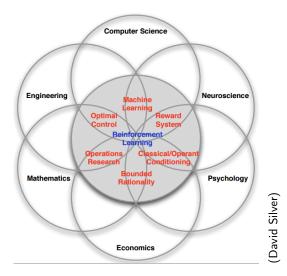




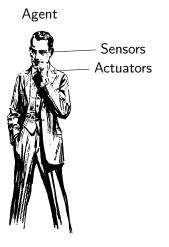




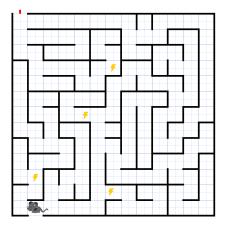
About *Reinforcement Learning* DRL in Relation to other Terms in Deep Learning



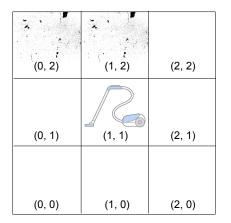
Agent, Sensors, Actuators



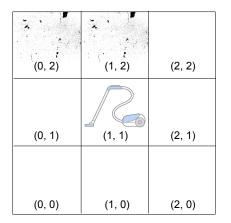
- > Agent: Acting Entity
- > Through Sensors, the Agent perceives its environment
- > ... which it acts upon with its Actuators.



- > Agent: Mouse
- > Sensors: Board (encoding?)
- Actuators: Forward, backward, turn ±90°



- > Agent: Vacuum bot
- Sensoren: Area immediately in front of the bot
 - > Encoding: dirty ∈ {yes, no}
- Actuators: Forward, backward, turn ±90°



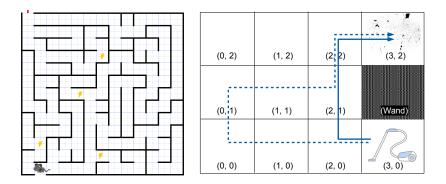
- > Agent: Vacuum bot
- Sensoren: Area immediately in front of the bot
 - > Encoding: $dirty \in \{yes, no\}$
 - > Local vs. global
- Actuators: Forward, backward, turn ±90°



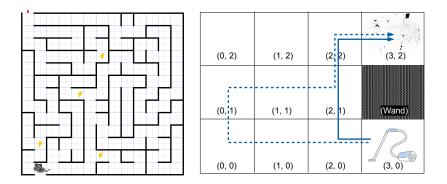
- > Agent: Vacuum bot
- Sensoren: Area immediately in front of the bot
 - > Encoding: dirty ⊂ ∫ ves
 - $dirty \in \{yes, no\}$
 - > Local vs. global
 - > Sensors noisy?
- Actuators: Forward, backward, turn ±90°



- > Agent: Vacuum bot
- Sensoren: Area immediately in front of the bot
 - > Encoding: dirty ∈ {yes, no}
 - Local vs. global
 - > Sensors noisy?
- > Actuators: Forward, backward, turn ±90° > Slippage?



> What route do mouse and bot take?



- > What route do mouse and bot take?
- > ... or, even more interisting: Why do mouse/bot take a particular route?

- Reward: Feedback from the environment about the agent's action regarding the agent's goal
- > "Reward *reinforces* the agent to do the right thing."
- Scalar: Unitless, no futher form big, small, positive, negative, ...
- > No requirements to frequency; most common: per fixed *t*, per action
- > Local: Rewards the immediate action
- > Training based on reward (directly or indirectly) Problem: associating actions and rewards (e.g., bank robbery: high immediate reward, long-term: not so good)

Stock Trading Profits/Losses

Chess Values of a chess piece, value of a position, result of a game (ELO; or simply win: +1, draw: 0, loss: -1) Dopamine Level Biological reward: Joy Vacuum Bot Fill state of the dust tank Arcade +1 for every frame survived, +1 for every enemy overcome, ...

Web Crawler Information gain

Stock Trading Profits/Losses

Chess Values of a chess piece, value of a position, result of a game (ELO; or simply win: +1, draw: 0, loss: -1) Dopamine Level Biological reward: Joy Vacuum Bot Fill state of the dust tank Arcade +1 for every frame survived, +1 for every enemy overcome, ... Web Crawler Information gain

Power Grid Voltage band

Stock Trading Profits/Losses

Chess Values of a chess piece, value of a position, result of a game (ELO; or simply win: +1, draw: 0, loss: -1) Dopamine Level Biological reward: Joy Vacuum Bot Fill state of the dust tank Arcade +1 for every frame survived, +1 for every enemy overcome, ... Web Crawler Information gain

Power Grid Voltage band, CO₂

Stock Trading Profits/Losses

Chess Values of a chess piece, value of a position, result of a game (ELO; or simply win: +1, draw: 0, loss: -1) Dopamine Level Biological reward: Joy Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy overcome, ...

Web Crawler Information gain

Power Grid Voltage band, CO₂, MW from DER

Stock Trading Profits/Losses

Chess Values of a chess piece, value of a position, result of a game (ELO; or simply win: +1, draw: 0, loss: -1)

Dopamine Level Biological reward: Joy

Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy overcome, ...

Web Crawler Information gain

Power Grid Voltage band, CO₂, MW from DER, line losses avoided

Stock Trading Profits/Losses

Chess Values of a chess piece, value of a position, result of a game (ELO; or simply win: +1, draw: 0, loss: -1)

Dopamine Level Biological reward: Joy

Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy overcome, ...

Web Crawler Information gain

Power Grid Voltage band, CO₂, MW from DER, line losses avoided , rel. self-supply, ...

Caution Agent maximizes reward — not always the same as succeeding at an objective

September 20, 2020

Markov Process

Model for Observable Systems

- > System with *N* states
- > State Space

$$\boldsymbol{S} = \{\boldsymbol{s}_1, \boldsymbol{s}_2, \dots, \boldsymbol{s}_N\} \tag{1}$$

> Markov Property: Chain without memory

- > Let $Y = (X_t)_{t \in \mathbb{N}}$ be a space of random numbers, $X_t \in \boldsymbol{S}$
- > Y is a markov chain, iff:

$$P(X_{t+1} = s_{j_{t+1}} | X_t = s_{j_t}, X_{t-1} = s_{j_{t-1}}, \dots, X_0 = s_{j_0}) \quad (2)$$

= $P(X_{t+1} = s_{j_{t+1}} | X_t = s_{j_t}). \quad (3)$

> Transition Probabilities:

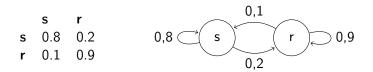
$$p_{ij}(t) := P(X_{t+1} = s_j \mid X_t = s_i), \quad i, j = 1, \dots, m$$
 (4)

> Transitions Matrix:

$$\mathbf{M}(t) = (p_{ij}(t))_{s_i, s_j \in S}, \ |\mathbf{M}| = N \times N$$
(5)

Weather Prediction A simple Markov Process

- > States: sunny or rainy: $S = \{s, r\}$
- > History: [*s*, *s*, *s*, *r*, *s*, . . .]
- > Probabilities calculated from history: M:




```
use strict;
use warnings;
use Algorithm::MarkovChain;
use Path::Class;
use autodie; # die if problem reading or writing a file
my @inputs = qw(king_james_bible.txt lovecraft_complete.txt);
my dir = dir(".");
my $f = "";
my @symbols = ();
foreach $f (@inputs) {
    my $file = $dir->file($f);
    my $lcounter = 0;
    my wcounter = 0;
    my $file_handle = $file->openr();
    while( my $line = $file_handle->getline() ) {
```

Markov Chains II Fun with texts


```
chomp ($line);
        my @words = split(' ', $line);
        push(@symbols, @words);
        $lcounter++;
        $wcounter += scalar(@words);
    }
    print "$lcounter lines, $wcounter words read from $f\n";
}
my $chain = Algorithm::MarkovChain::->new();
$chain->seed(symbols => \@symbols, longest => 6);
print "About to spew ... \n";
print "---\n\n";
foreach (1 .. 20) {
    my @newness = $chain->spew(length => 40,
                               complete => [ qw( the ) ]);
    print join (" ", @newness), ".\n\n";
}
```

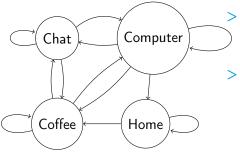

\$./lovebible.pl 2> /dev/null
99820 lines, 821134 words read from king_james_bible.txt
16536 lines, 775603 words read from lovecraft_complete.txt
About to spew ...

the backwoods folk -had glimpsed the battered mantel, rickety furniture, and ragged draperies. It spread \rightarrow over it a robber, a shedder of blood, when I listened with mad intentness. At last you know!At last to come to see \rightarrow me. Now Absalom.

(Charlie Stross — http:

//www.antipope.org/charlie/blog-static/2013/12/lovebiblepl.html)

More Complex Systems Office Routine



Transition probabilities from observation (count transitions, normalize)

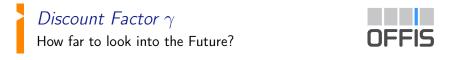
What motivates transitions?

(lapan2018deep)

- > Transition **Probabilities**: System Dynamic
- > Transition Values: "Belohnung" for a transition
- > **Return** of an episode:

$$G_t = \gamma^0 R_{t+1} + \gamma^1 R_{t+2} + \gamma^2 R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
 (6)

- G_t Overall Return
- R_t Reward for a transition at t
 - γ Discount Factor (counters infinite loop)



$$G_t = \gamma^0 R_{t+1} + \gamma^1 R_{t+2} + \gamma^2 R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
(7)

> For each t: Calculate return as sum of following rewards R_t :

$$\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \tag{8}$$

- > In eq. (8) $k \to \infty$: Stopping condition?
- > Multiplication with $\gamma \in$ [0,9; 0,99]: Agent's "foresight"

September 20, 2020

- > Reward from transition
- > Return at the end of a chain of transitions
- > How does an agent choose an action in s_t ?

- > Reward from transition
- > Return at the end of a chain of transitions
- > How does an agent choose an action in s_t ?
- > Value: Expected return for a state

$$V(s) = \mathbb{E}\left[G|S_t = s\right] \tag{9}$$

- > Reward from transition
- > Return at the end of a chain of transitions
- > How does an agent choose an action in s_t ?
- > Value: Expected return for a state

$$V(s) = \mathbb{E}\left[G|S_t = s\right] \tag{9}$$

- > Reward from transition
- > Return at the end of a chain of transitions
- > How does an agent choose an action in s_t ?
- > Value: Expected return for a state

$$V(s) = \mathbb{E}\left[G|S_t = s\right] \tag{9}$$

- > For each state s,
- > is the value of this state, V(s),

- > Reward from transition
- > Return at the end of a chain of transitions
- > How does an agent choose an action in s_t?
- > Value: Expected return for a state

$$V(s) = \mathbb{E}\left[G|S_t = s\right] \tag{9}$$

- > For each state s,
- > is the value of this state, V(s),
- > is the mean (alias *expected*) return

- > Reward from transition
- > Return at the end of a chain of transitions
- > How does an agent choose an action in s_t?
- > Value: Expected return for a state

$$V(s) = \mathbb{E}\left[G|S_t = s\right] \tag{9}$$

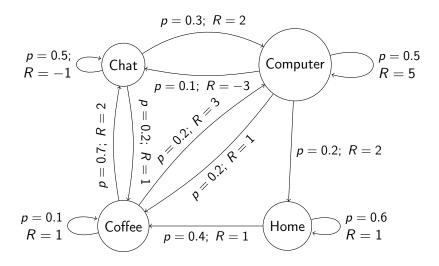
- > For each state s,
- > is the value of this state, V(s),
- > is the mean (alias *expected*) return
- > that follows from the *Markov Reward Process*.

An Example: The Dilbert Reward Process

- > home \rightarrow home : 1 (It's good to be home.)
- > home \rightarrow coffee : 1 (Coffee first!)
- > computer \rightarrow computer : 5 (Hard work bears fruit.)
- > computer \rightarrow chat : -3 (Do not disturb!)
- > chat \rightarrow computer : 2 (Back to work.)
- > $computer \rightarrow coffee$: 1 (Coders are catalysts that turn coffee into code.)
- > coffee \rightarrow computer : 3 (...)
- > coffee \rightarrow coffee : 1 (Good coffee needs time.)
- > coffee \rightarrow chat : 2 (Some chat at the coffee maker.)
- > chat \rightarrow coffee : 1 (Cup already empty?)
- $> chat \rightarrow chat : -1$ (Long conversations become boring fast.) (lapan2018deep)

September 20, 2020

Gewinn, Belohnung und Wert Ein Beispiel: Der *Dilbert Reward Process* **OFFIS**



Values of States in the Dilbert Reward Process

With $\gamma = 0$:

- > $V(chat) = -1 \cdot 0.5 + 2 \cdot 0.3 + 1 \cdot 0.2 = 0.3$
- > $V(coffee) = 2 \cdot 0.7 + 1 \cdot 0.1 + 3 \cdot 0.2 = 2.1$
- > $V(home) = 1 \cdot 0.6 + 1 \cdot 0.4 = 1.0$
- > $V(computer) = 5 \cdot 0.5 + (-3) \cdot 0.1 + 2 \cdot 0.2 = 2.6$

Values of States in the Dilbert Reward Process

With $\gamma = 0$:

- > $V(chat) = -1 \cdot 0.5 + 2 \cdot 0.3 + 1 \cdot 0.2 = 0.3$
- > $V(coffee) = 2 \cdot 0.7 + 1 \cdot 0.1 + 3 \cdot 0.2 = 2.1$
- > $V(home) = 1 \cdot 0.6 + 1 \cdot 0.4 = 1.0$
- > $V(computer) = 5 \cdot 0.5 + (-3) \cdot 0.1 + 2 \cdot 0.2 = 2.6$

Most valuable state?

Values of States in the Dilbert Reward Process

With $\gamma = 0$:

- > $V(chat) = -1 \cdot 0.5 + 2 \cdot 0.3 + 1 \cdot 0.2 = 0.3$
- > $V(coffee) = 2 \cdot 0.7 + 1 \cdot 0.1 + 3 \cdot 0.2 = 2.1$
- > $V(home) = 1 \cdot 0.6 + 1 \cdot 0.4 = 1.0$
- > $V(computer) = 5 \cdot 0.5 + (-3) \cdot 0.1 + 2 \cdot 0.2 = 2.6$

Most valuable state? Computer:

- > computer \rightarrow computer: common
- > computer → computer: high reward
- > computer \rightarrow computer: seldom interrupted Value for $\gamma = 1$?

Values of States in the Dilbert Reward Process

With $\gamma = 0$:

- > $V(chat) = -1 \cdot 0.5 + 2 \cdot 0.3 + 1 \cdot 0.2 = 0.3$
- > $V(coffee) = 2 \cdot 0.7 + 1 \cdot 0.1 + 3 \cdot 0.2 = 2.1$
- > $V(home) = 1 \cdot 0.6 + 1 \cdot 0.4 = 1.0$
- > $V(computer) = 5 \cdot 0.5 + (-3) \cdot 0.1 + 2 \cdot 0.2 = 2.6$

Most valuable state? Computer:

- > computer \rightarrow computer: common
- > computer → computer: high reward
- > computer \rightarrow computer: seldom interrupted
- Value for $\gamma = 1$? $V(s) = \infty$!
 - > No Sink State

>
$$V(s) > 0 \forall s$$

September 20, 2020

- Markov Process: States and transition probabilities (Markov Chains)
- > Markov Reward Process: MP plus value of a state
- > ... and now for the decision?!

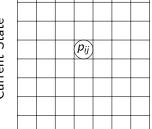
- Markov Process: States and transition probabilities (Markov Chains)
- > Markov Reward Process: MP plus value of a state
- > ... and now for the decision?! Right, that is still missing:
- > Markov Decision Process: MRP plus Actions
- Action Space A (action space): set of actions A = {a₁, a₂, ..., a_n}

September 20, 2020

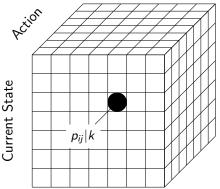
Erweiterung der Transitionsmatrix Vom Markov Reward Process zum Markov Decision OFFIS Process

Markov Reward Process

Next State

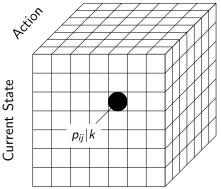


Markov Decision Process



Target State

Markov Decision Process



Target State

- > $p_{ij}|k$ probability for $i \rightarrow j$, if k chosen as action
- > k aus Policy:

$$\pi(a|s) = P[A_t = a|S_t = s]$$
(10)

- Formal: Probability distribution over all actions in a given state
- This definition includes random actions during exploration

The Cross-Entropy Method

Based on *Sampling Theorem*

Choosing an Action as Probability Distribution

OFFIS

Sampling Theorem:

$$\mathbb{E}_{x \sim p(x)} \Big[H(x) \Big] = \int_{x} p(x) H(x) \, \mathrm{d}x \tag{11}$$

H(x) Reward from a Policy $Policy x \Leftrightarrow R(\pi(\cdot))$ p(x) Distribution over all possible *policies*

- Maximizing H(x) by searching all possible distributions (not feasible)
- > p(x) unknown (is the environment)
- > Strategy: Iterative development of a distribution q(x) that approximates p(x)

Sampling with Distribution Introducing q(x)

Sampling Theorem:

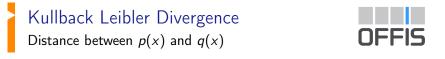
$$\mathbb{E}_{x \sim p(x)} \Big[H(x) \Big] = \int_{x} p(x) H(x) \, \mathrm{d}x = \int_{x} q(x) \frac{p(x)}{q(x)} H(x) \, \mathrm{d}x \quad (12)$$
$$= \mathbb{E}_{x \sim q(x)} \left[\frac{p(x)}{q(x)} H(x) \right] \quad (13)$$

- > In eq. (13) Substituting $p(x) \Leftrightarrow q(x)$
- > Goal: Optimization metric (approximation)
- Distance metric between two distributions Kullback Leibler Divergence (KL)

Kullback Leibler Divergence Distance between p(x) and q(x)

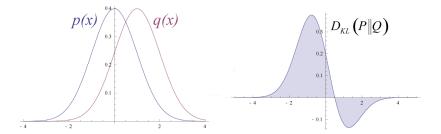
$$\mathcal{KL}(p_{1}(x) \parallel p_{2}(x)) = \mathbb{E}_{x \sim p_{1}(x)} \log \frac{p_{1}(x)}{p_{2}(x)}$$
(14)
$$= \underbrace{\mathbb{E}_{x \sim p_{1}(x)} \left[\log p_{1}(x) \right]}_{\text{Entropy}} - \underbrace{\mathbb{E}_{x \sim p_{1}(x)} \left[\log p_{2}(x) \right]}_{\text{Cross Entropy}}$$
(15)

- > Alternative Names: Information Gain, relative Entropy
- > Not symmetric: $KL(p_1(x) || p_2(x)) \neq KL(p_2(x) || p_1(x))$, using sums instead: $KL_2(p_1(x) || p_2(x)) =$ $KL_2(p_2(x) || p_1(x)) = KL(p_1(x) || p_2(x)) + KL(p_2(x) || p_1(x))$



$$KL(p_1(x) \parallel p_2(x)) = \mathbb{E}_{x \sim p_1(x)} \Big[\log p_1(x) \Big] - \mathbb{E}_{x \sim p_1(x)} \Big[\log p_2(x) \Big]$$
(16)

$$= \int_{-\infty}^{\infty} p(x) (\log p(x)) - \log q(x)) dx \quad (17)$$



Combining Sampling and KL Iterative Approximation

Iteratively improving the approximation p(x)H(x):

$$q_{i+1}(x) = \underset{q_{i+1}(x)}{\arg\min} - \mathbb{E}_{x \sim q_i(x)} \frac{p(x)}{q(x)} H(x) \log q_{i+1}(x)$$
$$q_0(x) = p(x) \quad (18)$$

For Reinforcement Learning:

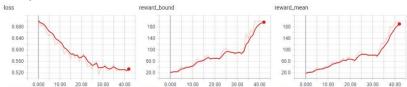
$$\pi_{i+1}(\boldsymbol{a}|\boldsymbol{s}) = \operatorname*{arg\,min}_{\pi_{i+1}} - \mathbb{E}_{\boldsymbol{z} \sim \pi_i(\boldsymbol{a}|\boldsymbol{s})} \Big[R(\boldsymbol{z}) \ge \psi_i \Big] \log \pi_{i+1}(\boldsymbol{a}|\boldsymbol{s}) \quad (19)$$

September 20, 2020

Cross Entropy Step-by-Step In a Nutshell

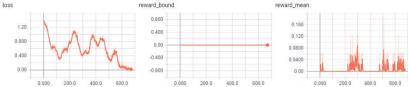
procedure CrossEntropy(env, batchSize = 16, percentile = 70) ann \leftarrow GenerateRandomANN() for batch \in PlayEpisodes(batchSize) do obs_e, acts_e, rews_e \leftarrow FilterElite(batch, percentile) actScores_e \leftarrow ann(obs_e) loss \leftarrow CrossEntropy(actScores_e, acts_e) ann \leftarrow Optimize(ann, loss) end for end procedure

Influence of Episode Distribution Pro and Con at the Same Time



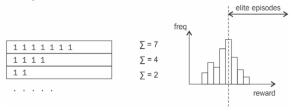
Cartpole

Frozen Lake

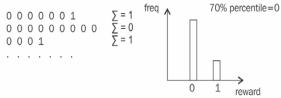


Influence of Episode Distribution Pro and Con at the Same Time

Cartpole



Frozen Lake



Overview CF Strengths and Weaknesses of the Cross Entropy **OFFIS** Method

Pros

- Simplicity: Easy to understand, >implementations in 100 LoC possible
- Good convergence for short >episodes with immediate rewards

Optimizations:

- Bigger *Batches* (prolonges training) >
- Discount Factor $\gamma \in [0,9;0,95]$ favors short episodes (easy to train) >
- Hold *Elite Episodes* longer >
- Reduce learning rate during ANN training (reduces speed of >convergence)

September 20, 2020

Cons

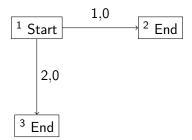
- Episodes must be finite and >short
- Episodes need high variance in >rewards

The Bellman Principle of Optimality

Value of a State:

$$V(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$$
(20)

Example:



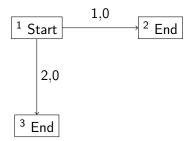
- > V(1)? Unknown without π
- > Even here infinite states

> Always right:

Value of a State:

$$V(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$$
(20)

Example:



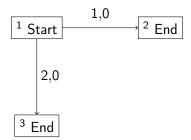
V(1)? Unknown without π
 Even here infinite states
 Always right: V(1) = 1.0

> Always right: V(1) = 1.0

Value of a State:

$$V(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$$
(20)

Example:

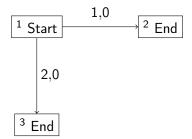


- > V(1)? Unknown without π
- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down:

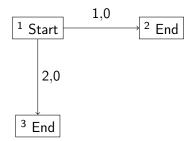
Value of a State:

$$V(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$$
(20)

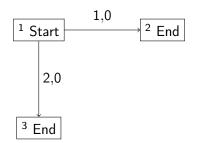
Example:



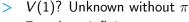
- > V(1)? Unknown without π
- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down: V(1) = 2.0



- > V(1)? Unknown without π
- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down: V(1) = 2.0
 - > $p_{right} = 0.5, p_{down} = 0.5$:



- > V(1)? Unknown without π
- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down: V(1) = 2.0
 - > $p_{right} = 0.5, p_{down} = 0.5;$ V(1) = $1.0 \cdot 0.5 + 2.0 \cdot 0.5 = 1.5$

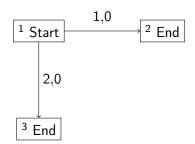


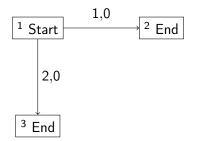
- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down: V(1) = 2.0

> $p_{right} = 0.5, p_{down} = 0.5$: V(1) =

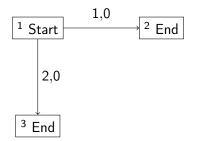
 $1.0 \cdot 0.5 + 2.0 \cdot 0.5 = 1.5$

> $p_{right} = 0.1, p_{down} = 0.9$:





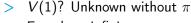
- >~V(1)? Unknown without π
- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down: V(1) = 2.0
 - > $p_{right} = 0.5, p_{down} = 0.5$: V(1) =
 - $1.0 \cdot 0.5 + 2.0 \cdot 0.5 = 1.5$
 - > $p_{right} = 0.1, p_{down} = 0.9$: V(1) = $1.0 \cdot 0.1 + 2.0 \cdot 0.9 = 1.9$



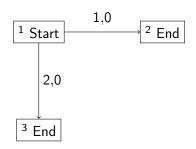
- >~V(1)? Unknown without π
- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down: V(1) = 2.0
 - > $p_{right} = 0.5, p_{down} = 0.5$: V(1) =
 - $1.0 \cdot 0.5 + 2.0 \cdot 0.5 = 1.5$
 - > $p_{right} = 0.1, p_{down} = 0.9$: V(1) = $1.0 \cdot 0.1 + 2.0 \cdot 0.9 = 1.9$

September 20, 2020

Value Revisited Value of a State

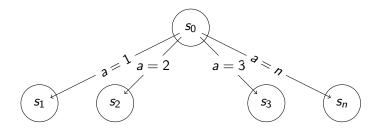


- > Even here infinite states
 - > Always right: V(1) = 1.0
 - > Always down: V(1) = 2.0
 - > $p_{right} = 0.5, p_{down} = 0.5$: V(1) =
 - $1.0 \cdot 0.5 + 2.0 \cdot 0.5 = 1.5$
 - > $p_{right} = 0.1, p_{down} = 0.9$: V(1) = $1.0 \cdot 0.1 + 2.0 \cdot 0.9 = 1.9$
- > And for more then 3 states...?



Value of a State

An abstract Look at V(s)



 $r = r_1, V_1$ $r = r_2, V_2$ $r = r_3, V_3$ $r = r_n, V_n$

> An action k:

$$V_0(a = a_k) = r_k + \gamma V_k \tag{21}$$

> Best action:

$$V_0 = \max_{a \in 1...n} (r_a + \gamma V_a)$$
(22)

Value of a State An abstract Look at V(s)

> Action 1:

$$V_0(a = a_1) = r_1 + \gamma V_1$$
 (23)

> Eine Handlung *i*, stochastisch:

$$V_0(a = a_1) = p_1(r_1 + \gamma V_1) + p_2(r_2 + \gamma V_2) + \dots + p_n(r_n + \gamma V_n)$$
$$\sum_{i=1}^n p_i = 1, 0 \quad (24)$$

> Formal für eine beliebige Handlung a:

$$V_0(a) = \mathbb{E}_{s \sim \mathbf{S}} \Big[r_{s,a} + \gamma V_s \Big] = \sum_{s \in \mathbf{S}} p_{a,0 \to s} (r_{s,a} + \gamma V_s) \quad (25)$$

Bellman Principle of Optimality Finding the Maximum Value of a State

Bellman Equation for deterministic case:

$$V_0 = \max_{a \in 1...n} (r_a + \gamma V_a) \tag{26}$$

Bellman Principle of Optimality:

$$V_{0} = \max_{a \in \boldsymbol{A}} \mathbb{E}_{s \sim \boldsymbol{S}} \Big[r_{s,a} + \gamma V_{s} \Big] = \max_{a \in \boldsymbol{A}} \sum_{s \in \boldsymbol{S}} p_{a,0 \to s} (r_{s,a} + \gamma V_{s}) \quad (27)$$

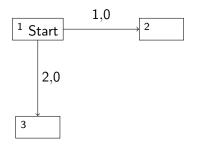
Bellman Principle of Optimality Finding the Maximum Value of a State

$$V_{0} = \max_{a \in \boldsymbol{A}} \mathbb{E}_{s \sim \boldsymbol{S}} \Big[r_{s,a} + \gamma V_{s} \Big] = \max_{a \in \boldsymbol{A}} \sum_{s \in \boldsymbol{S}} p_{a,0 \to s} (r_{s,a} + \gamma V_{s}) \quad (28)$$

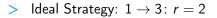
> Defining a state's value as the sum of...

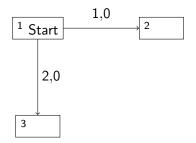
- > Rewards, r
- > and Values V(s) of following states $s \in \boldsymbol{S}$
- > multiplied by transition probability $p_{0\mapsto s}$
- > given an action $a \in A$
- > Applies to all V(s): Recursion
- > In theory, best action obtainable by complete exploration of the state-action-value space

Recursion, Bellman, & Optimality Solution to a very real Problem

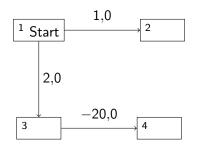


Recursion, Bellman, & Optimality Solution to a very real Problem





Recursion, Bellman, & Optimality Solution to a very real Problem



- > Ideal Strategy: $1 \rightarrow 3$: r = 2
 - Or not?! $1 \rightarrow 3 \rightarrow 4$: r = -18
- > Value of a state depends on the following states!
- Recursive definition covers all following states (in theory).
- > (Naive) Policy: For the current state, evaluate all reachable states and choose the action with the biggest value r + V(s).

Value of an Action Value of an action *a* in State *s*

$$Q_{s,a} = \mathbb{E}_{s'\sim \boldsymbol{S}} \Big[r_{s,a} + \gamma V_{s'} \Big] = \sum_{s' \in \boldsymbol{S}} p_{a,s \to s'} (r_{s,a} \gamma V_{s'}) \qquad (29)$$

> Expected immediate reward r_{s,a} and discounted long-term reward of the target state

$$V_s = \max_{a \in \mathbf{A}} Q_{s,a} \tag{30}$$

> Value of a state s, V(s), is the value of the best possible action executable in s: expressing V(s) via $Q_{s,a}$

$$Q(s,a) = r_{s,a} + \gamma \max_{a' \in \mathbf{A}} Q(s',a')$$
(31)

> Applying the Bellman Principle to actions September 20, 2020

Applying the Bellman Principle of Optimality: from Value Iteration to Q Learning

Q Learning Basis of a Big Family of Algorithms

$$Q(s,a) = r_{s,a} + \gamma \max_{a' \in \mathbf{A}} Q(s',a')$$
(32)

A simple Example:

 $s_0: \text{ Initial State} \\ s_1, s_2, s_3, s_4: \text{ Final States} \\ p = \frac{1}{3} \text{ per action for slipping left/right}$

Q Learning Basis of a Big Family of Algorithms s_1 $p = \frac{1}{3}$ $p = \frac{1}{3}$ $p = \frac{1}{3}$ *s*₂ *s*0 13 *s*4 13 n = = $=\frac{1}{3}$ $p = \frac{1}{3}$ D $p = \frac{1}{3}$

S3

$$Q(s, a) = r_{s,a} + \gamma \max_{a' \in \mathbf{A}} Q(s', a')$$
(33)

$$Q(s,a) = 0 \forall s \in \{1,2,3,4\}$$

$$Q(s_0, up) = \frac{1}{3}V_1 + \frac{1}{3}V_2 + \frac{1}{3}V_4 = \frac{1}{3}1 + \frac{1}{3}2 + \frac{1}{3}4 = 2.31$$

$$Q(s_0, left) = \dots = 1.98$$

$$Q(s_0, right) = \dots = 2.64$$

$$Q(s_0, down) = \dots = 2.97$$

$$V(s_0) = \max_{a \in A} Q(s_0, a) = \frac{1}{2}Q(s_0, down) = 2.97$$

Q Learning *Q Value* the Action Indicator

 $p = \frac{1}{2}$ $\rho = \frac{1}{2}$ $Q(s_1, a)$ 0 $Q(s_2, a)$ 0 $Q(s_3, a)$ 0 $Q(s_4, a)$ 0 $Q(s_0, up)$ 2.31 $Q(s_0, left)$ 1.98 $Q(s_0, right)$ 2.64 $Q(s_0, down)$ 2.97

$$Q(s,a) = r_{s,a} + \gamma \max_{a' \in \mathbf{A}} Q(s',a')$$
(34)

- Q better suited than V for selecting actions (value of an action, not value of a state)
- > V computable from Q
- Missing: method for calculating Q/V (without knowing all transitions!)

$$r = 2$$

$$s_1$$

$$r = 1$$

$$m{r} = [1, 2, 1, 2, 1, ...]$$

 $V(s_1) = 1 + \gamma(2 + \gamma(1 + \gamma(2 + ...)))$
 $= \sum_{i=0}^{\infty} 1\gamma 2^{2i} + 2\gamma^{2i+1}$

With $\gamma = 0.9$:

$$\begin{array}{ll} 10 & 0.9^{10} \approx 0.348 \\ 50 & 0.9^{50} \approx 0.00515 \\ 100 & 0.9^{100} \approx 0.0000265 \end{array}$$

$$V(s_2) = 2 + \gamma(1 + \gamma(2 + \gamma(1 + ...)))$$

= $\sum_{i=0}^{\infty} 2\gamma 2^{2i} + 1\gamma^{2i+1}$

Value Iteration Algorithm in a Nutshell

procedure Valuelteration(*env*) $Q \leftarrow [0]$ $\triangleright \forall s, a$ for all $s \in S, a \in s$ do $Q_{s,a} \leftarrow \sum_{s'} p_{a,s \rightarrow s'}(r_{s,a} + \gamma \max_{a'} Q_{s',a'})$ \triangleright Bellman Update end for return Qend procedure

September 20, 2020

procedure Valuelteration(*env*) $Q \leftarrow [0]$ $\triangleright \forall s, a$ for all $s \in S, a \in s$ do $Q_{s,a} \leftarrow \sum_{s'} p_{a,s \rightarrow s'}(r_{s,a} + \gamma \max_{a'} Q_{s',a'})$ \triangleright Bellman Update end for return Qend procedure

- > State space must be discrete
- > ...and small enough!
- > Transition probabilities from observations (s_0, s_1, a)

Value Iteration Algorithm in a Nutshell

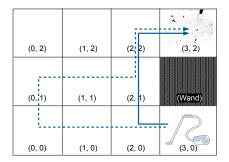
Deep Q Networks

Capacity & Compute Power needed for Value Iteration **OFFIS**

> Saving (s, a, r, s')

Motivation

- Assumption: every value theoretically known and iterable
- Back-of-napkin calculation:
 8.5 billion floating point numbers in in 32 GB RAM



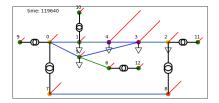
Atari 2600 (Benchmark for > DRL): $210 \times 160 = 33600$ pixels, 128 colors

Motivation

- Each frame: > $128^{33600} \approx 10^{70802}$ pictures (states!)
- 99(,9?)% of all iterations > nonsensible
- > Space Invaders & Co not discrete

SCORE	160				LIVES					-
۰	۰	æ	۰	۰	۰	۰	۰	æ	۰	٠
کھ ا	۲	ð	۲	ð	۲	۲		۲	ŧ	æ
<u>ب</u>	۲	۴	۴		۴	ŧ		۴	ŧ	¥۵
			8			8			8	*
			3							
							_			
				2		Ĩ				

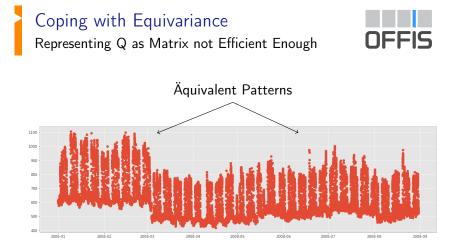
- Power grid mixed discrete/continuous (tap changer vs. generator scaling)
- State space in quasi-stationary calculations already complex (loat flow calculations, state estimation, ...)



Tabular Q Learning Optimizing Value Iteration

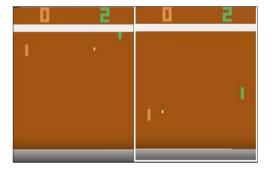

```
procedure TabularLearning(env, \gamma, \alpha)
      \boldsymbol{Q} \leftarrow [], R \leftarrow 0, \epsilon_{e} \leftarrow 1.0
      repeat
           s \leftarrow Read(env)
            if s \notin Q \lor random() < \epsilon_e then \triangleright Exploration vs. Exploitation
                  a \leftarrow RandomChoice(\mathbf{A})
                 \epsilon_e \leftarrow \epsilon_e - 0.02
            else
                  a \leftarrow \max_{a \in \mathbf{A}} Q_{\mathbf{a}}
            end if
            s', r_{s,a} \leftarrow Act(env, a)
            Q_{s,a} \leftarrow (1-\alpha)Q_{s,a} + \alpha(r + \gamma \max_{a' \in \mathbf{A}} Q_{s',a'})
                                                                                                       ▷ Bellman
            R' \leftarrow R
            R \leftarrow R + \gamma r_{sa}
      until |R - R'| < \epsilon_R
      return Q
end procedure
```

September 20, 2020



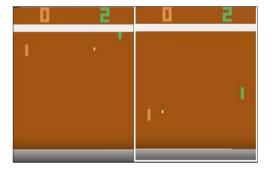
> Difference—wrt actions—between both states?

Coping with Equivariance Representing Q as Matrix not Efficient Enough



> Difference—wrt actions—between both states?

Coping with Equivariance Representing Q as Matrix not Efficient Enough



- > Difference—wrt actions—between both states?
- > None!
- > But separate entry in $Q_{s,a}$: Regression Problem

September 20, 2020

Deep Q Learning Non-Linear Representation for *Q*

- > Regression Problem: non-linear mapping $f:(s,a)\mapsto Q$
- > f: Artificial Neural Network
- > Adapting the algorithm:
 - 1. Init Q(s, a) with potentially random approximation
 - 2. (s, a, r, s') = Act(env, a)
 - 3. Calculate error:

$$\mathcal{L} = \begin{cases} (Q_{s,a} - r)^2 & \text{at the end of episode,} \\ (Q_{s,a} - (r + \gamma \max_{a' \in \mathcal{A}} Q_{s',a'}))^2 & \text{during the episode.} \end{cases}$$
(35)

- Change Q(s,a) with gradient descent algorithm (Stochastic Gradient Descent, SGD)
- 5. Repeat from (2) until convergence

Independent and Identically Distributed...?

Base Assumption of SGD a Problem

- > Base for Deep Q Learning borrowed from supervised Deep Learning:
- > Assumption of SGD: i.i.d
- > Neither nor at DRL
 - 1. Independent: (s, a, r, s') not independent, obviously
 - 2. Indentically: training data (exploration) differs from optimal policy (exploitation): (exploration vs. exploitation)
- > Solution: Replay Buffer
 - > Ring buffer
 - > fixed size
 - > more or less i.i.d., but still "fresh enough"

Correlation between Steps Achilles' Heel of the Bellman Principle

$$Q_{s,a} = r + \gamma \max_{a' \in \mathbf{A}} Q_{s',a'}$$
(36)

> Deriving
$$Q_{s,a}$$
 via $Q_{s',a'}$: Bootstrapping

> s and s' differ in just one step

- > Update of Q(s, a) influences Q(s', a'): Training unstable (After updating Q(s, a), Q(s', a') becomes worse if immediately explored; next update worsens, etc. ad infinitum)
- Target Network: copy of Policy Network for Q_{s',a'}; sync every N steps
- > N a hyper parameter N = [1,000; 10,000]

Partially Observable Markov Decision OFFIS

SCORE	160			LIVES 🧰 📥					
٨	æ	۰			٠	٠	
ě	ě ě	**	۲	ŧ		ð	۴	۲	
ě	ě ě	۲	۲	æ		۲	۲	۲	
	**	**					*		
100		1 A 2		Ť.					
					2				

> How fast do the invaders move?

Partially Observable Markov Decision OFFIS

- > How fast do the invaders move?
- > Markov Decision Process dictates that state is completely derivable from one observation
- In RL not always possbile:
 Partially Observable Markov
 Decision Process, POMDP
- Hack: Merge k observations (e.g., k = 4 frames in ATARI)

DQN Training I Final Form

procedure DqnLearning(*env*, γ , α , *N*) $\mathbf{Q} \leftarrow \text{RandomWeights}(), \hat{\mathbf{Q}} \leftarrow \text{RandomWeights}()$ $replayBuffer \leftarrow []$ $\epsilon \leftarrow 1.0. \ n \leftarrow 0$ repeat $a \leftarrow \begin{cases} RandomChoice(\mathbf{A}) & \text{if } Random() < \epsilon \\ \arg \max_a Q_{s,a} & \text{else} \end{cases}$ $\epsilon \leftarrow \epsilon - 0.02$ $(s', r) \leftarrow Act(env, a)$ replayBuffer \leftarrow replayBuffer \cup (s, a, r, s') $minibatch \leftarrow RandomSample(replayBuffer)$ for all $step = (s, a, r, s') \in minibatch$ do $y = \begin{cases} r & \text{if } EpisodeEnd(minibatch) \\ r + \gamma \max_{a' \in \mathbf{A}} \hat{Q}_{s'a'} & \text{else} \end{cases}$

DQN Training II Final Form

$$\begin{array}{c} \mathcal{L} = (Q_{s,a} - y)^2 \\ \boldsymbol{Q} \leftarrow SGD(\boldsymbol{Q}, y) \\ n \leftarrow n + 1 \\ \text{if } n = N \text{ then} \\ \boldsymbol{\hat{Q}} \leftarrow \boldsymbol{Q} \\ n \leftarrow 0 \\ \text{end if} \\ \text{end for} \\ \text{until } HasConverged() \\ \text{return } \boldsymbol{Q} \\ \text{end procedure} \end{array}$$

How to Proceed Further

Deep Q Learning is Only the Beginning A Wrapup: What we Should Do Now

- > DQN + Extensions (Rainbow Paper) very handy
- > But suffers from the curse of dimensionality
- > "Status Quo" for Power Systems: DQN, DDPG
- Still a long way in the power systems community until AlphaZero is applied
- > Power Systems benchmark missing
- > Framework for multi-agent in power systems missing
- > Want to help? Drop a note: eric.veith@offis.de