

To launch B open a	a shell in Unix/Linux or a command line	interface
window in Windows	a. At the prompt, type R <return></return>	interrace
gigi@hp-850g2-lavazza: ~ File Edit View Search Terminal Hel gigi@hp-850g2-lavazz	lp a:∼\$ R	_OX
R version 3.0.2 (201 Copyright (C) 2013 T Platform: x86_64-pc-	3-09-25) "Frisbee Sailing" he R Foundation for Statistical Computing linux-gnu (64-bit)	
R is free software a You are welcome to r Type 'license()' or	nd comes with ABSOLUTELY NO WARRANTY. edistribute it under certain conditions. 'licence()' for distribution details.	
Natural language s		
R is a collaborative Type 'contributors() 'citation()' on how	project with many contributors. ' for more information and to cite R or R packages in publications.	
Type 'demo()' for so 'help.start()' for a Type 'q()' to quit R	me demos, 'help()' for on-line help, or n HTML browser interface to help.	
>		

Exploration and Analysis of Software Engineering Data with R

TYNE	pace: is it	useful?
 Not necessarily 		
 I work on R progra 	ms and	
Continuously s	ave them	
Write results to	files	
 So, I hardly ever no 	eed to save t	ne workspace

Exploration and Analysis of Software Engineering Data with R

	Data frames	
 A data fra can have d <- c(e <- c(f <- c(mydata names(m 	ame is more genera different modes (nu (1,2,3,4) ("red", "white", (TRUE,TRUE,TRUE,F <- data.frame(d, nydata) <- c("ID'	al than a matrix, in that different columns numeric, character, factor, etc.). , "red", NA) ,FALSE) 1,e,f) D","Color","Passed")

A 2.					
Name	effect				
length(object)	number of elements or components				
<pre>str(object)</pre>	structure of an object				
class(object)	class or type of an object				
names(object)	names				
c(object, object,)	combine objects into a vector				
<pre>cbind(object, object,)</pre>	combine objects as columns				
rbind(object, object,)	combine objects as rows				
ls()	list current objects				
rm(object)	delete an object				
newobject <- edit(object)	edit copy and save a new object				
fix(object)	edit in place				

STU STU STU STU	IDIOR LIVE	A INSUB	[Data	ase	et ii	np	ort	exa	Imp	le						
	Le	et us	imp	ort tl	ne d	ata	from	n file	coco	mo.o	csv						
coco	omo81.c	sv - Libre	Office	Calc													
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>I</u> r	nsert F	ormat	<u>r</u> ools <u>D</u>	ata <u>N</u>	indow	<u>H</u> elp									
- 1	• 🗎	- 🖾		A 10	8	ABC	eec 🎖	6 🖻 🛍	• 🍰		1 - 1	D Bz	z, 🌍	1 6) 🖬 🌘	?	
- 80	Libe	ration Ca		10		A				a 1 🔒 🕯	· · · ·	.000		• E	. 🏡 .	m	
-		acion 30	1115			<i>a</i> -a :					, 000 C				- 60		
A1		~	f (x)	Σ =	rely												
	A	В	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q
1	rely	data	cplx	time	stor	virt	turn	acap	aexp	pcap	vexp	lexp	modp	tool	sced	loc	actual
2	0.88	1.16	0.7	1	1.06	1.15	1.07	1.19	1.13	1.17	1.1		1.24	1.1	1.04	113	2040
3	0.00	1.10	0.05	1	1.00	0.87	0.04	1 0.86	0.91	1 0.86	0.9	0.95	0.01	0.01	1	122	243
5	0.75	1 16	0.03	1	1	0.87	0.54	1 19	0.02	1 42	0.5	0.95	1 24	0.51	1 04	60	240
6	0.88	0.94	1	1	1	0.87	1	1.13	0.51	0.86	0.9	0.95	1.24	1	1.04	16	33
7	0.75	1	0.85	1	1.21	1	1	1.46	1	1.42	0.9	0.95	1.24	1.1	1	4	43
8	0.75	1	1	1	1	0.87	0.87	1	1	1	0.9	0.95	0.91	0.91	1	6.9	8
9	1.15	0.94	1.3	1.66	1.56	1.3	1	0.71	0.91	1	1.21	1.14	1.1	1.1	1.08	22	1075
10	1.15	0.94	1.3	1.3	1.21	1.15	1	0.86	1	0.86	1.1	1.07	0.91	1	1	30	423
11	1.4	0.94	1.3	1.11	1.56	1	1.07	0.86	0.82	0.86	0.9	1	1	1	1	29	321
12	1.4	0.94	1.3	1.11	1.56	1	1.07	0.86	0.82	0.86	0.9	1	1	1	1	32	218
13	1.15	0.94	1.3	1.11	1.06	1	1	0.86	0.82	0.86	1	0.95	0.91	1	1.08	37	201
14	1.15	0.94	1.3	1.11	1.06	1.15	1	0.71	. 1	0.7	1.1	. 1	0.82	1	1	25	79
15	1.15	0.94	1.65	1.3	1.56	1.15	1	0.86	1	0.7	1.1	1.07	1.1	1.24	1.23	3	60
16	1.4	0.94	1.3	1.3	1.06	1.15	0.87	0.86	1.13	0.86	1.21	1.14	0.91	1	1.23	3.9	61
17	1.4	1	1.3	1.3	1.56	1	0.87	0.86	1	0.86	1	. 1	1	1	1	6.1	40
18	1.4	1	1.3	1.3	1.56	1	0.87	0.86	0.82	0.86	1	. 1	1	1	1	3.6	9
L.	Lavaz	za @ 10	CSEA 2	2018			- 3	2 -	E	xploratio	on and A	Analysis	of Softw	vare Er	ngineeri	ng Dat	ta with R

Descriptive statistics code n=length(dfDataset[,1]) cat("\nThe dataset contains", n, "datapoints\n") locMean=mean(dfDataset\$loc) locMedian=median(dfDataset\$loc) locSd=sd(dfDataset\$loc) locMin=min(dfDataset\$loc) locMax=max(dfDataset\$loc) cat("Mean KLoC =", locMean, "stdev =", locSd, "\n") cat("Median KLoC =", locMedian, "\n") cat("KLoC range = [", locMin, ",", locMax, "]\n") L. Lavazza @ ICSEA 2018 Exploration and Analysis of Software Engineering Data with R - 39 -

estimatio	onErrors=dfDataset\$actual-
ABc-abc(exp(modelIntercept)*d+Dataset\$loc^modelCoe++
nar(mar-	$c(1 \ 1 \ 4 \ 1 \ 3 \ 1 \ 2 \ 1))$
hoxnlot($\Delta Rs vlah="Absolute residuals [PM]"$
r process	main="(O(OMO log-log model of effort vs_size")
abline(h=	=0. col="gray")
	ean(ARs), pch=23, bg="blue")
points(me	
<pre>points(me cat("Medi</pre>	ian absolute residual =", median(ARs), "PM \n")
points(me cat("Medi	ian absolute residual =", median(ARs), "PM \n")
points(medi	ian absolute residual =", median(ARs), "PM \n")
points(medi	ian absolute residual =", median(ARs), "PM \n")
cat("Med:	ian absolute residual =", median(ARs), "PM \n")
points(med:	ian absolute residual =", median(ARs), "PM \n")
points(med:	ian absolute residual =", median(ARs), "PM \n")

• It is generally believen the software to be of	ved that developed as	elopment effort depends on the size of swell as on its complexity.
 Let us build a mode Size [KLoC] 	el of effort ba	sed on two variables:
 Required reliable 	ility (COCON	IO cost driver "rely")

<pre>idxes=c(1: set.seed(1)</pre>	umPoints)	
set.seed(1)	,	
	2345)	
for(it in	L:10){	
rndIdx=s	<pre>ample(idxes) # random</pre>	ized indexes
numPoint	Perteration=floor(num	Points/10)
for(j in	1:10){	
··· # :	see next slide	
ر ۲		
, boxplot(re	siduals, main="COCOMO	<pre>log-log model of effort vs Size&rely"</pre>
		5 5 <i>j</i>
yl	ab="residuals")	
yl abline(h=0	ab="residuals") 、col="gray")	
yl abline(h=0	ab="residuals") , col="gray")	
yl bline(h=0	ab="residuals") col="gray")	
yl line(h=0	ab="residuals") , col="gray")	

Exploration and Analysis of Software Engineering Data with R


```
Wilcoxon sign rank test
wilcox_test <- function(ARmx, ARmy, mx_name, my_name, printout){</pre>
  trWe=wilcox.test(ARmx, ARmy, alternative = "two.sided", mu = 0, paired = TRUE);
  trWg=wilcox.test(ARmy, ARmx, alternative = "greater", mu = 0, paired = TRUE);
  trWl=wilcox.test(ARmy, ARmx, alternative = "less", mu = 0, paired = TRUE);
  pmax=max(trWe$p.value, trWg$p.value, trWl$p.value)
  if(pmax==trWe$p.value && pmax>0.05){
    if(printout) {
      cat("Wilcoxon sign rank test:", my_name,
           "'s absolute residuals are equal to ", mx_name,
          "'s (p-value=", trWe$p.value, ")\n")
    }
    return("=")
  }
  if(pmax==trWg$p.value && pmax>0.05){
    if(printout) {
      cat("Wilcoxon sign rank test:", my_name,
    "'s absolute residuals are smaller than ", mx_name,
           "(p-value=", trWg$p.value, ")\n")
    }
    return(">")
  }
   L. Lavazza @ ICSEA 2018
                                 - 84 -
                                            Exploration and Analysis of Software Engineering Data with R
```


De De	aling with outliers
• We want to ch model.	neck if there is any data point that affects excessively the
 This can be d distance. Code 	one in several ways, including by computing Cook's
cd <- cooks cat("maximu	.distance(lm.r); um Cook distance =", max(cd), "\n")
 Result maximum Cod 	ok distance = 0.1670832
	This is a small enough value. If not, we could remove the responsible data point from the dataset and derive a new model.
	00 Evploration and Applyric of Software Engineering Data with E

 For every class you know: A set of OO measures Whether the class is faulty (i.e., it contains one or more faults not 	
 A set of OO measures Whether the class is faulty (i.e., it contains one or more faults not 	
 Whether the class is faulty (i.e., it contains one or more faults not 	
not.	s) or
 Objective: we want a model that –given a set of measures conce a class– yields the probability that the class is faulty, i.e., its <i>faul</i> <i>proneness</i>. 	erning (It-

	wmc	noc	cbo‡	rfc 🗘	lcom [‡]	ca ‡	ce ‡	npm [‡]	lcom3 ‡	loc 🌣	dam ÷	moa≑	mfa ÷	cam ‡	ic ÷	cbm [‡]	amc ‡	max cc	avg cc	faul
1	7	0	2	14	3	1	1	7	0.58333333	89	1.00000000	0	0.7272727	0.5714286	1	1	11.428571	2	1.2857	
2	8	0	2	17	2	1	1	8	0.57142857	162	1.00000000	0	0.6956522	0.5833333	1	1	19.000000	8	2.3750	
3	38	0	14	38	703	8	9	38	2.00000000	38	0.00000000	0	0.0000000	0.2421053	0	0	0.000000	1	1.0000	
4	10	0	9	57	0	4	5	9	0.11111111	510	1.00000000	0	0.0000000	0.4250000	0	0	49.900000	3	1.1000	
5	28	0	19	83	172	12	9	24	0.78240741	800	1.00000000	0	0.0000000	0.1785714	1	1	27.285714	23	2.5357	
6	36	0	11	45	214	11	0	34	0.74725275	774	0.92307692	0	0.0000000	0.3314286	1	1	20.138889	52	2.9444	
7	7	0	5	13	21	5	0	7	2.00000000	88	0.00000000	0	0.0000000	0.4285714	0	0	11.571429	4	2.0000	
8	2	0	4	8	1	2	3	1	1.50000000	37	1.00000000	0	1.0000000	1.0000000	0	0	16.500000	0	0.0000	
9	11	0	9	80	41	5	8	1	0.81304348	829	1.00000000	1	0.9790356	0.3818182	0	0	72.272727	7	2.0000	
10	19	0	13	89	113	9	11	1	0.7444444	839	0.60000000	4	0.9664430	0.1754386	0	0	42.105263	7	1.4211	
11	6	0	10	34	11	6	9	2	0.98888889	261	0.11111111	1	0.9908257	0.5000000	0	0	39.500000	1	0.6667	
12	10	0	6	49	0	1	5	9	0.11111111	473	1.00000000	0	0.0000000	0.4250000	0	0	46.200000	3	1.1000	
13	8	0	3	18	2	2	1	8	0.66666667	246	0.66666667	0	0.6956522	0.5833333	1	1	29.375000	7	2.0000	
14	84	0	44	313	3022	34	44	5	0.88012048	5924	0.95000000	5	0.8490909	0.2010582	0	0	68.571429	49	2.5119	
15	8	0	3	17	2	2	1	8	0.57142857	205	1.00000000	0	0.6956522	0.5833333	1	1	24.375000	7	2.0000	
16	24	0	12	51	130	9	4	23	0.77173913	584	0.87500000	0	0.0000000	0.2422360	1	1	23.000000	28	2.4167	
17	6	0	9	22	11	1	8	5	0.80000000	90	1.00000000	0	0.0000000	0.6666667	0	0	13.666667	1	0.6667	
18	4	0	2	8	6	2	0	4	1.33333333	21	1.00000000	0	1.0000000	0.6666667	0	0	4.000000	0	0.0000	
19	3	0	6	20	3	1	5	2	1.40000000	100	1.00000000	0	0.6666667	0.6666667	0	0	30.666667	1	0.3333	
20	4	0	4	4	6	2	2	4	2.00000000	4	0.00000000	0	0.0000000	1.0000000	0	0	0.000000	1	1.0000	
21	3	0	2	6	3	0	2	1	1.50000000	17	1.00000000	0	0.0000000	0.6666667	0	0	4.000000	1	0.6667	

THE THE	
 A few tests have been pro 	pposed to test the validity of BLR models:
 Sign test and Wilcoxol Residuals of the BLR Absolute Residuals of if the former are small one independent varia In R terms, you composition By the way, the same two variables is better 	n Signed Rank Test, to compare the Absolute model with one independent variable with the the BLR model with no independent variable er, than it is worth building a BLR model with able pare abs(y-lm.g\$fitted) with abs(y-AP/n) e procedure is applied to check if model that uses er than a model that uses just one variable.
 Hosmer-Lemeshow G 	oodness of Fit (GOF) Test
Wald Test for Model C	Coefficients
 	
	All these tests are supported by some R package. We do not go into details.

A "de	fault" thres	shold
 Considering that quite "natural" so 	AP/n is the ave lution is the fol	erage probability that a class is faulty, lowing:
if (fp(<u>x</u>) < A	₽/n)	
then fault	iness=0	
else fault	iness=1	
• Other thresholds	can be set, us	ing different criteria:
Risk-averse tl	nresholds	0
 lower than 	AP/n	
Thresholds based	ased on busine	ess considerations
 E.g., given intended us 	the required reli sage, one may d	ability of the product, its cost and the lecide that fault-proneness=0.4 is sufficient

ALL PROPERTY	Accuracy indicators					
Family	Indicator	Definition	Purpose			
	Precision	$\frac{TP}{EP}$	extent to which we can believe that an			
Positive-	Recall	$\frac{TP}{AP}$	extent to which actual positives are			
focused		2 correctly estimated positive				
	F-measure	$\frac{1}{Precision} + \frac{1}{Recall}$	overall estimation evaluation for positives			
	NPV	$\underline{TN}_{\overline{EN}}$	extent to which we can believe that an			
DT II	a		estimated negative is actually negative			
Negative- focused	Specificity	$\frac{1}{AN}$	extent to which actual negatives are correctly estimated negative overall evaluation of estimation for negative			
	NM	$\frac{2}{\frac{1}{NPV} + \frac{1}{Specificity}}$				
			overall evaluation of estimation for			
	5	AP AN	estimated positives			
Overall	Markedness	$\frac{TP}{EP} - \frac{FN}{EN}$	overall evaluation of estimation for			
	<i>d</i>	$TP \cdot TN - FP \cdot FN$	actual positives			
	φ	$\sqrt{EN \cdot EP \cdot AN \cdot AP}$	positives and negatives			

148 pruned tr	م			. – – – – – – – – – – – – – – – – – – –	© @ © ©) 0 0	- 00 - 0	-0
				0.0				
wmc <= 19: ne	gative (3	1.0/5.0)	Iess	0.6				
wmc > 19: pos	itive (12	.0/1.0)	faultir	0.4				
Number of Leav	ves : 2	2		N				
Size of the t	ree : 3	3		0				
n	egative p	ositive			2000	0		
negative	26	1		0	20	40	60	80
positive	5	11				WMC		

