

STUDIORUM NO. TVN	Contents
	Topics
	The context
	The problem
	Proposal 1: slope-based thresholds
	Proposal 2: optimistic-pessimistic approach
	Proposal 3: fault-proneness H-index
	Final considerations
ICSEA 2016	- 2 - Setting Thresholds in Software Engineering

	Estimated/Actual Faultiness Contingency Tables								
• We need	to check how clos	se estimated faultine	ss is to actua	al faultiness					
		Actual							
		Non-faulty	Faulty	Total					
Estimated	Non-faulty	TN	FN	EN					
	Faulty	FP	TP	EP					
	Total	AN	AP	n					
		41 00	tting Thropholds in Co	ftuero Enginogrica					

MS/2 threshold values

$$x_{rMS} = \frac{1}{c_1} \left(\ln \left(\frac{1 - \sqrt{1 - r}}{1 + \sqrt{1 - r}} \right) - c_0 \right)$$

$$fp(x_{rMS}) = \frac{1}{2} - \frac{\sqrt{1 - r}}{2}$$
When r=0.5:

$$x_{MS/2} \approx -\frac{0.7656 + c_0}{c_1}$$

$$fp(x_{MS/2}) \approx 0.1464$$
The slope is always half the maximum when fp=0.1464
Its solution is the slope is always and the maximum when fp=0.1464

 Results of the mathematical analysis: For any BLR model, maximum convexity occurs at the same values of fp. For any BLR model, half maximum slope occurs at the same values of fp. For any PBR model, maximum convexity occurs at the same values of fp. For any PBR model, half maximum slope occurs at the same values of fp. For any PBR model, half maximum slope occurs at the same values of fp. For any PBR model, balf maximum slope occurs at the same values of fp.
Fault-proneness values per type of model and type of threshold.
Model MS/2 MC
PBR 0.1195 0.1587
BLR 0.1464 0.2113
The values in the table above apply to <u>all</u> BLR and PBR models.

var	All	0.5	МС	MS/2	_
WMC	0.80	0.79	0.74	0.65	-
CBO	0.82	0.77	0.83	0.81	
RFC	0.88	0.88	0.88	0.88	
CA	0.81	0.77	0.78	0.75	In bold the result
CE	0.73	0.69	0.81	0.77	provide by the best
LOC	0.91	0.91	0.91	0.88	threshold, for each
MOA	0.69	0.69	0.52	0.54	model.
CAM	0.69	0.69	0.75	0.75	
AMC	0.73	0.73	0.70	0.68	
Max CC	0.71	0.69	0.65	0.64	

var	All	0.5	МС	MS/2
WMC	0.75	0.69	0.81	0.94
СВО	0.88	0.75	0.94	0.94
RFC	0.94	0.88	0.94	0.94
CA	0.81	0.75	0.88	0.94
CE	0.75	0.63	0.94	0.94
LOC	0.94	0.94	0.94	0.94
MOA	0.56	0.56	0.75	1.00
CAM	0.75	0.69	0.94	0.94
AMC	0.75	0.69	0.88	0.88
Max CC	0.63	0.56	0.75	0.94

Results for all datasets, with BLR Best model for each dataset							
Project	Vor	n	AP/n	F-	measure thresholds	max	recall
ckim		10	0.50	0.86	MS /2	1.00	MS /2
intercafe	CBO	27	0.50	0.00	0.5	0.75	$A \parallel 0.5 MC MS/2$
incercare		111	0.15	0.80	MC MS/2	1.00	MC MS/2
lucene 2.2	NPM	247	0.57	0.00	MC MS/2	1.00	MC MS/2
lucene-2.4	REC	340	0.50	0.75	MC MS/2	1.00	MC MS/2
nieruchomosci	MaxCC	27	0.37	0.89	MS/2	1.00	MS/2
pbeans1	LCOM	26	0.77	1.00	MC MS/2	1.00	MC MS/2
pdftranslator	LCOM	33	0.45	0.81	MC	1.00	MS/2
poi-1.5	LCOM	237	0.59	0.76	0.5	1.00	MC MS/2
poi-2.5	WMC	385	0.64	0.83	0.5	1.00	MC MS/2
poi-2.5	NPM	385	0.64	0.83	0.5	1.00	MC MS/2
poi-2.5	LCOM3	385	0.64	0.83	0.5	1.00	MC MS/2
poi-3.0	RFC	442	0.64	0.82	0.5	1.00	MC MS/2
poi-3.0	CE	442	0.64	0.82	tr	1.00	MC MS/2
sklebagd	WMC	20	0.60	0.92	MC	1.00	MC MS/2
szybkafucha	СВО	25	0.56	0.89	MC MS/2	0.80	MC MS/2
velocity-1.4	RFC	196	0.75	0.92	MC MS/2	1.00	MC MS/2
workflow	RFC	39	0.51	0.77	MC MS/2	1.00	MC MS/2
×erces-1.4	СВО	588	0.74	0.96	0.5	1.00	MC MS/2
×alan-2.5	NOC	803	0.48	0.70	MC MS/2	1.00	MC MS/2
zuzel	RFC	29	0.45	0.80	MC	0.92	MC MS/2
kalkulator	AMC	27	0.22	0.80	0.5	0.67	All 0.5 MC MS/2
wspomaganiepi	MOA	18	0.67	1.00	MC MS/2	1.00	MC MS/2
 MS/2 a MC ac 	always ma hieves sir	aximiz milar r	<mark>es Rec</mark> esults	all (and	l often also	FM) -	
ICSEA 2016 - 73 - Setting Thresholds in Software Engineering							

Conclu	usions					
 If you have a BLR external quality q t You can use the formation of the second sec	or PBR r o some in ollowing t	nodel q(nternal n hreshold	x) that r neasure Is on q	elates an interesting x		
	Model	MS/2	MC			
	PBR	0.1195	0.1587	apply to any g		
	BLR	0.1464	0.2113	and any x!		
 to get risk-averse thresholds on x. According to our experimental results, you maximize the number of actually positive modules that are estimated positives, while you still get relatively few negative modules that are estimated positives. This means that you get an excellent trade-off between the effectiveness of the development and maintenance effort the costs of quality improvement the costs of quality improvement 						
	0 9	-				
ICSEA 2016		- 1	76 -	Setting Thresholds in Software Engineering		

k Title Ci	tations	Authors	Journal/
SPADE: An environment for software process analysis, design, and enactment	196	S Bandinelli, A Fuggetta, C Ghezzi, L Lavazza	Software
2 Modeling and improving an industrial software process	156	S Bandinelli, A Fuggetta, L Lavazza, M Loi, GP Pic	IEEE Tra
3 A conceptual basis for feature engineering	146	C Reid Turner, A Fuggetta, L Lavazza, AL Wolf	The Jour
4 Deriving executable process descriptions from UML	122	E Di Nitto, L Lavazza, M Schiavoni, E Tracanella,	. Proceed
5 Combining UML and formal notations for modelling real-time systems	89	L Lavazza, G Quaroni, M Venturelli	ACM SIG
6 Applying GQM in an industrial software factory	66	A Fuggetta, L Lavazza, S Morasca, S Cinti, G	ACM Tra
7 The architecture of SPADE-1 process-centered SEE	61	S Bandinelli, M Braga, A Fuggetta, L Lavazza	Lecture
8 Translation and optimization of logic queries: the algebraic approach	56	S Ceri, G Gottlob, L Lavazza	Proceed
9 The GOODSTEP Project: General Object-Oriented Database for Software Engineering	48	The GOODSTEP Team	APSEC'9
0 Algres: an advanced database system for complex applications	50	S Ceri, S Crespi-Reghizzi, R Zicari, G Lamperti, LA	IEEE Sof
1 Providing automated support for the GQM measurement process	52	L Lavazza	IEEE Sof
2 OpenBQR: a framework for the assessment of OSS	50	Davide Taibi, Luigi Lavazza and Sandro Morasca	OSS 200
3 Feature engineering	44	CR Turner, AL Wolf, A Fuggetta, L Lavazza	Proceed
4 An experience in process assessment	40	F Cattaneo, A Fuggetta, L Lavazza	Proceed
5 Combining Problem Frames and UML in the Description of Software Requirements	30	L Lavazza, V. Del Bianco	FASE 20
6 SystemC/C-based model-driven design for embedded systems	29	Riccobene, Scandurra, Bocchio, Rosti, Lavazza, N	TECS
7 Model-based functional size measurement	33	Lavazza, Del Bianco, Garavaglia	ESEM 20
8 Enhancing Requirements and Change Management through Process Modelling	31	Lavazza, Valetto	ICRE 200
9 A UML-based approach for representing problem frames	25	L Lavazza, V. Del Bianco	IEE Sem
0 A case study in COSMIC functional size measurement: The rice cooker revisited	27	L Lavazza, V Del Bianco	Softwar
Automated support for process-aware definition and execution of measurement pla	25	Lavazza, Barresi	ICSE200
2 Automated Measurement of UML Models: an open toolset approach	23	L Lavazza, A Agostini	J. of Obj
3 Requirements-based estimation of change costs	22	L Lavazza, G Valetto	
4 An investigation of the users' perception of OSS guality	21	Del Bianco, Vieri, Luigi Lavazza, Sandro Morasca	OSS 201
5 Model checking UML specifications of real time software	24	Del Bianco, V. Lavazza, L. Mauri, M.	ICECCS 2
6 A Survey on Open Source Software Trustworthiness	21	Del Bianco, Vieri, Luigi Lavazza, Sandro Morasca	IEEE SW
7 Managing software artifacts on the Web with Labyrinth	21	Cattaneo, Fabiano, Elisabetta Di Nitto, Alfonso I	ICSE 200
8 Quality of Open Source Software: The QualiPSo Trustworthiness Model	19	Del Bianco, V. and Lavazza, L. and Morasca, S. ar	OSS 200

nk Title	Citations	Authors	Journal/book/conference
1 SPADE: An environment for software process analysis, design, and enactment	196	S Bandinelli, A Fuggetta, C Ghezzi, L Lavazza	Software process modellin
2 Modeling and improving an industrial software process	156	S Bandinelli, A Fuggetta, L Lavazza, M Loi, GP Pi	IEEE Transactions on Softw
3 A conceptual basis for feature engineering	146	C Reid Turner, A Fuggetta, L Lavazza, AL Wolf	The Journal of Systems &
4 Deriving executable process descriptions from UML	122	E Di Nitto, L Lavazza, M Schiavoni, E Tracanella,	Proceedings of the 24th In
5 Combining UML and formal notations for modelling real-time systems	89	L Lavazza, G Quaroni, M Venturelli	ACM SIGSOFT Software Er
6 Applying GQM in an industrial software factory	66	A Fuggetta, L Lavazza, S Morasca, S Cinti, G	ACM Transactions on Soft
7 The architecture of SPADE-1 process-centered SEE	61	S Bandinelli, M Braga, A Fuggetta, L Lavazza	Lecture Notes in Compute
8 Translation and optimization of logic queries: the algebraic approach	56	S Ceri, G Gottlob, L Lavazza	Proceedings of the 12th Ir
9 Providing automated support for the GQM measurement process	52	L Lavazza	IEEE Software
0 Algres: an advanced database system for complex applications	50	S Ceri, S Crespi-Reghizzi, R Zicari, G Lamperti, L/	IEEE Software
1 OpenBQR: a framework for the assessment of OSS	50	Davide Taibi, Luigi Lavazza and Sandro Morasca	OSS 2007
12 The GOODSTEP Project: General Object-Oriented Database for Software Engineerin	48	The GOODSTEP Team	APSEC'94
3 Feature engineering	44	CR Turner, AL Wolf, A Fuggetta, L Lavazza	Proceedings of the 9th int
4 An experience in process assessment	40	F Cattaneo, A Fuggetta, L Lavazza	Proceedings of the 17th In
5 Model-based functional size measurement	33	Lavazza, Del Bianco, Garavaglia	ESEM 2008
6 Enhancing Requirements and Change Management through Process Modelling	31	Lavazza, Valetto	ICRE 2000
7 Combining Problem Frames and UML in the Description of Software Requirements	30	L Lavazza, V. Del Bianco	FASE 2006
8 SystemC/C-based model-driven design for embedded systems	29	Riccobene, Scandurra, Bocchio, Rosti, Lavazza, I	TECS
9 A case study in COSMIC functional size measurement: The rice cooker revisited	27	L Lavazza, V Del Bianco	Software Process and Pro
O A UML-based approach for representing problem frames	25	L Lavazza, V. Del Bianco	IEE Seminar Digests (IWA)
Automated support for process-aware definition and execution of measurement p	25	Lavazza, Barresi	ICSE2005
2 Model checking UML specifications of real time software	24	Del Bianco, V. Lavazza, L. Mauri, M.	ICECCS 2002
3 Automated Measurement of UML Models: an open toolset approach	23	L Lavazza, A Agostini	J. of Object Technology
4 Requirements-based estimation of change costs	22	L Lavazza, G Valetto	
25 An investigation of the users' perception of OSS quality	21	Del Bianco, Vieri, Luigi Lavazza, Sandro Morasca	OSS 2010
b A Survey on Open Source Software Trustworthiness	21	Del Bianco, Vieri, Luigi Lavazza, Sandro Morasca	IEEE SW
/ Managing software artifacts on the Web with Labyrinth	21	Cattaneo, Fabiano, Elisabetta Di Nitto, Alfonso	OSS 2000
28 Quality of Open Source Software: The QualiPSo Trustworthiness Model	19	Del Bianco, V. and Lavazza, L. and Morasca, S. a	OSS 2009

STUDIORE TRADE	Contents	
	Topics	
	The context	
	The problem	
	Proposal 1: slope-based thresholds	
	Proposal 2: optimistic-pessimistic approach	
_	Proposal 3: fault-proneness H-index	
	> Final considerations	
ICSEA 2016	- 110 - Setting Thresh	olds in Software Engineering

