

Knowledge Extraction and Semantic Annotation

Maria Pia di Buono

Mario Monteleone Annibale Elia Department of Political, Social and Communication Sciences University of Salerno April 19 - 24, 2015 - Barcelona, Spain

Human & Machine Semantics

Is there any possibility to make an efficient and effective matching between Human and Machine Semantics?

Semantics ≠ Pragmatics

Knowledge Representation

Knowledge Representation is heavly based on using terminology, due to the fact that many terms have precise meanings in a specific domain but not in others.

Therefore, a coherent and consistent **formal description language** is crucial and indispensable to achieve a **correct semantic representation** of a specific knowledge domain.

Semantic Annotation 1/2

A correct semantic representation is based on a semantic annotation process of resources.

We may differentiate three types of annotations:

- **1.** informal annotations (they don't use a formal language)
- **2. formal annotations**, that have formally defined constituents and are thus machine-readable, and
- **3. ontological annotations**, that have formally defined constituents and use only ontological terms that are socially accepted and understood

(OREN, Eyal, et al. What are semantic annotations. Technical Report. DERI Galway, 2006.)

Semantic Annotation 2/2

Annotation task provides some data to some other data, creating a **relation** between annotating data and annotated data.

Several tools and paradigms exist to create annotations of Web resources, both manually, semi-automatically and fully automatically (i.e. OntoText, OntoGen, GoNTogle, NooJ, SemTag, TextToOnto, ...)

Knowledge Extraction 1/2

Knowledge Extraction is the retrieval, from structured and unstructured sources, of text elements and text data bringing and representing knowledge.

Extracting semantic content requires **conceptbased systems**, which use sets of features you need to (pre)define in order to represent conceptualizations and their formalizations.

Knowledge Extraction 2/2

Extraction approaches require accurate recognition techniques for **semantic disambiguation** in order to cover several kinds of **descriptive data and metadata**.

The output must be in a **machine-readable** and **machine-interpretable** format and must represent the retrieved knowledge in order to facilitate (mainly) machine-based inferencing processes.

Ontology-Based Information Extraction 1/2

- Ontology-based information extraction (OBIE) is a Knowledge Extraction (KE) task
- OBIE uses ontologies and their specifications to "drive" the information extraction process.
- When tagging resources, terms and concepts in the source ontology form the basis for term matching.

Ontology-Based Information Extraction 1/2

OpenSemanticFramework Prescriptions for OBIE (2014):

- All ontology concepts have a definition
- All ontology concepts have alternative labels
- Where appropriate, ontology concepts have hidden labels to account for common misspellings
- Inference is used as appropriate during extraction processes.