
BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 1

Automatic Generation of Test
and Benchmark Workloads

Jozo J. Dujmović
Department of Computer Science

San Francisco State University

(Making programs that make programs)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 2

A New Approach to Benchmarking

• BenchMaker – a web oriented tool for
generation of benchmark programs

• Benchmark generation procedure:
– User visits a BenchMaker web site and

specifies desired benchmark(s) properties
– BenchMaker generates specified bench-

marks and delivers them to the user by e-
mail

• User compiles and executes
benchmarks

• Open source

1. Specify
benchmarks

2. Send specs
to BenchMaker

3. Get bench-
marks by e-mail

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 3

Contents
1. Classification of benchmarks
2. Industrial benchmarks
3. Benchmark scalability
4. BenchMaker 1 (BM1): Program generator based

on the recursive expansion (REX) method
5. BenchMaker 2 (BM2): Program generator based

on the kernel insertion (KIN) method
6. Applications of benchmark program generators
7. Work in progress:

(a) Towards open source benchmark manufacturing
(b) Benchmarking multicore and hyperthreaded systems

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 4

Classification of
Benchmarks

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 5

Basic types of computer workloads

• Natural (written by programmers using selected
programming languages; they have “semantic
identity”, i.e. they are solutions of selected real
problems)

• Synthetic (generated by code generators using
correct language constructs combined according to
desired distribution, but without semantic identity)

• Hybrid (segments of natural code combined by a
code generator in order to create aggregated
workloads that have desired size, resource
consumption, and semantic identity)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 6

Benchmarks
• Benchmark is any workload that is executed

not to get its results, but to measure the
speed of execution and the consumption of
computer resources

• Benchmark workload must be a semantically
correct sequence of service requests

• Goals of benchmarking:
– Performance measurement of hardware units
– Performance measurement of software units

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 7

Real Workload vs. Benchmark
Workload

• Real workload: a workload that is the
predominant computing activity of an
analyzed computer system.

• Benchmark workload: a workload that is
acceptable as a good representative of a real
workload

• Proof of similarity: a quantitative proof that
a selected benchmark workload is sufficiently
similar to the real workload; this proof is a
formal prerequisite for benchmarking

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 8

Theoretical background for
benchmarking (1)

• Status: Benchmarking is usually considered and
empirical art, and not an engineering activity based
on strict theoretical background

• Consequences: controversial area that is heavily
influenced by perception of analysts and by
corporate interests:
– The problem of standards and “standards”
– SPEC and other industry consortia
– The role of Internet in distributing incomplete and

temporary results
• Ludwig Boltzmann: “There is nothing more

practical than a good theory”

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 9

Theoretical background for
benchmarking (2)

• Program space: Theoretical foundations of
space where each point is a program (or
another more complex computer workload)

• Program difference metrics: theoretical
models of difference/distance between
individual computer workloads:
– White box approach
– Black box approach

• Cluster analysis: Techniques for grouping
similar workloads and replacing groups by
one or more best representatives

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 10

Six basic types of benchmarks

1. Real workloads used as benchmarks
2. Standard benchmarks
3. Kernels
4. Microbenchmarks
5. Synthetic benchmarks
6. Hybrid benchmarks

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 11

1. Real workloads (used as benchmarks)
• Characteristics: a selected class of applications in a selected

programming environment (100% natural workloads)
• Advantages:

– Represent themselves - used to eliminate or reduce the standard criticism
related to differences between the real and benchmark workloads

• Disadvantages:
– Usually too complex and too diversified
– The problem of the best representative among different programs in real

workloads is the same as for any other benchmark
– The problem of the best representative of input data (e.g. gcc xx; xx=?)
– Restricted to specific HW/SW environment
– Regularly modified after the change of HW/SW environment (reducing or

eliminating the fundamental advantage of this approach)
– Low portability of programs (regular use of all HW/SW-specific features)
– Low portability of data
– Low scalability
– Use of proprietary data (data protection problems)
– Problems related to input from users (interactive workloads, transact. proc.)
– Low reusability (regularly unique, nonstandard, and non reusable SW)
– Bottom line: High cost of benchmarking and questionable benefits

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 12

2. Standard benchmarks (e.g. SPEC)
• Characteristics: selected natural workloads modified to have fixed

input, selected resource consumption, and serve as benchmarks
• Advantages:

– Have semantic identity (problems from physics, chemistry, math, etc.)
– Adjusted to provide high portability
– Standardization (strict control of workload, conditions of execution and

measurement method to secure reproducibility of results and comparison
across various HW/SW platforms)

– Public availability of a database of measurements for the majority of
commercially available computers

• Disadvantages:
– The quality of representation problem (representativeness of real workload)
– Not scalable
– Need permanent upgrading (short life span)
– Fixed functionality (limited characterization of natural workloads)
– No adjustable parameters (fixed resource consumption)
– Affected by political processes inside consortia (approved by voting)
– Expensive (high cost of standardization, measurement and renewal)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 13

3. Kernels
• Characteristics: Important and frequently used

components of natural workloads with easily
recognizable semantic identity (matrix operations,
sort, search, data compression, etc.)

• Advantages:
– Clearly defined semantic identity
– High portability
– Low cost

• Disadvantages:
– The quality of representation problem

(representativeness of real workload)
– Narrow scope of resource utilization
– Limited scalability
– Fixed functionality (limited characterization of natural

workloads)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 14

4. Microbenchmarks
• Characteristics: small natural code segments designed to

isolate a specific performance feature and provide reliable
performance indicators that characterize the selected
HW/SW feature (e.g. the efficiency of recursive calls, the
efficiency of array processing, the efficiency of parameter
passing, the efficiency of sequential/random disk accesses,
etc.)

• Advantages:
– Clearly defined functionality and scope
– Focused insight into a specific performance feature
– High portability
– Low cost

• Disadvantages:
– Very narrow scope
– Absence of methodology for aggregating microbenchmark results

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 15

5. Synthetic benchmarks
• Characteristics: HLL programs automatically

generated by benchmark generators according to
user specification. No natural workloads included.

• Advantages:
– Possibility to specify desired frequencies of available

language constructs
– Fast generation of any size of source code
– Full portability
– Suitable for benchmarking compilers
– No cost

• Disadvantages:
– Fully artificial code (low representativeness of real

programs)
– Limited (rather low) diversity of generated code

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 16

6. Hybrid benchmarks
• Characteristics: HLL programs automatically generated by

benchmark generators as combinations of selected natural
code segments according to user specification.

• Advantages:
– Easy adjustment of desired semantic identity
– Possibility to specify desired frequencies of available natural code

segments, and select desired structure of benchmark program
– Fast generation of any size of source code in variety of languages
– High scalability
– Practically unlimited spectrum of functionality
– Full portability
– Mostly natural with low synthetic overhead
– Suitable for wide variety of benchmarking tasks
– Negligible cost

• Disadvantages:
– The quality of representation problem (representativeness of real

workload is based on aggregated semantic identity)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 17

Benchmark Workloads

Individual benchmark programs
Benchmark suites
Benchmark series

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 18

Benchmark Suites
A family of nonredundant benchmark
programs having a variety workload
characteristics (e.g. numeric [int and/or float]
and nonnumeric/combinatorial problems)
Typical benchmark suites are expected to
include a necessary and sufficient variety of
workload characteristics that represent a set
of expected natural workloads (proof = ?)
Typical usage: performance evaluation and
comparison of competitive computer systems

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 19

Benchmark Series

A sequence of benchmark programs
having same workload characteristics
but different (increasing) sizes
Typical series include increasing
number of lines of code (or increasing
memory consumption)
Typical usage: compiler performance
measurement and analysis

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 20

Program Cloning – a Goal for
the Future

Define a set of measurable program parameters
Extract program parameters from a running natural
workload
Pass the parameters to a program generator
Specify additional scalability parameters (desired
size and resource consumption)
Generate synthetic workloads according to given
specifications (and provide a measure of accuracy)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 21

Industrial Benchmarks

(And Their Relation to Moore’s
Law)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 22

MOORE’S LAW: Exponential growth of
computer performance as a function of time

q t q t T() /= 02

t = time
q = performance (speed, mem., cost)
q0 = initial performance at time t=0
T = performance doubling time

≅ 18 months for memory capacity
≅ 12 months for performance/price

New problem: Core # doubling time

q q()0 0=
q T q() = 2 0

q T q()2 4 0=
q nT qn() = 2 0

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 23

MOORE’S LAW: current issues

• Limits of clock rate (< 5 GHz)
• Limits of processor power (< 100 W)
• Expansion in the area of parallelism (multiple

processor cores, hyperthreading)
• Difficult software problems:

– How to write/compile/optimize parallel programs?
– SW developers are not ready to utilize the

expected exponential growth of processor cores
• Core doubling time ≠ performance doubling

time

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 24

Approach currently used by industry
[1/2]

“Technology evolves at a breakneck pace.
With this in mind, SPEC believes that
computer benchmarks need to evolve as
well. While the older benchmarks (SPEC
CPU95) still provide a meaningful point of
comparison, it is important to develop tests
that can consider the changes in
technology.”

http://www.spec.org/osg/cpu2000/

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 25

Approach currently used by industry
[2/2]

The SPEC CPU Benchmark Search Program

SPEC holds to the principle that better benchmarks
can be developed from actual applications. With this
in mind, SPEC is once again seeking to encourage
those outside of SPEC to assist us in locating
applications that could be used in the next CPU-
intensive benchmark suite, currently planned to be
SPEC CPU2004.

http://www.spec.org/osg/cpu2000/CPU2004/search_program.html

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 26

Back of the Envelope Feasibility Analysis

Main memory size = x GB

Lines of source code in 50 MB of memory = 1,000,000

Effort to write 1,000,000 LOC = 6873 person months
[intermediate COCOMO]

Time to write 1,000,000 LOC = 55 months = 4.6 years

Number of software engineers = 125

Development cost = $xx Million

Reward offered by SPEC = $x Thousand

Discrepancy factor = 10000

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 27

Natural vs. Synthetic Programs
Q: Is it possible to follow Moore’s law using natural

(manually written) benchmark programs?

A: No!

Q: Why?

A: Because the computer performance grows faster
than our ability to provide natural, representative,
reliable, and permanently increasing large programs.

Q: How to quickly create benchmark programs having
desired properties and desired size?

A: The only way is to develop techniques and tools for
automatic generation of benchmark programs.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 28

Current Performance/Benchmark Relation

Industrial benchmark suites (e.g.
SPEC) use natural benchmarks that
remain unchanged for years without the
possibility to follow the exponential
growth of computer performance.

Computer performance

Time0
1989 1992 1995 2000 2004

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 29

Desired Performance/Benchmark Relation

Adjustable benchmark suites
based on synthetic
benchmarks generated by
program generators can
accurately follow the
exponential growth of
computer performance.

Computer performance

Time
0

Benchmark generators ⇒ Benchmark scalability

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 30

Current Industrial Benchmarks
Not scalable
Expensive
Need permanent upgrading
Fixed functionality (limited characterization
of natural workloads)
No adjustable parameters (fixed resource
consumption)
Affected by political processes inside
consortia (approved by voting)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 31

Desired Features of Industrial
Benchmark Programs

Industrial benchmark suites should be able to
strictly follow the exponential growth of computer
performance and provide:
⇨ Adjustable program size
⇨ Adjustable memory consumption
⇨ Adjustable CPU power consumption
⇨ Adjustable functionality
Such Benchmarks must be:
⇨ Quickly generated (> 1MLOC/minute)
⇨ Able to easily adjust workload properties
⇨ Inexpensive and available on the Web

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 32

Suggested Approach to
Industrial Benchmarks

Based on generators of scalable synthetic
(hybrid) benchmarks
Adjustable functionality
Adjustable resource consumption
Web-oriented
Produced by the user according to user’s
specifications
Open-source

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 33

Currently Available Generators of
Benchmark Programs

BenchMaker 1 (BM1: generator of
compilable programs primarily used for
compiler performance measurement and
analysis; limited control of executable
properties)
BenchMaker 2 (BM2: generator of general
purpose executable programs, used for
computer performance measurements;
good control of executable properties)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 34

Benchmark Scalability

(Manufacturing Scalable
Benchmarks)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 35

Benchmark Scalability (1/2)

Benchmark properties that are relevant for the
usability of benchmarks in system performance
analysis include resource consumption
(processor, memory, disk), functionality (type of
processing), program structure, etc.
Benchmarks are scalable if users can create
benchmark workloads having independently
adjustable all relevant properties.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 36

Benchmark Scalability (2/2)

Controlled increase of the consumption of
computing resources (memory,
processors, etc.) by adding more, or more
specific, benchmark program modules
Support for both upwards and downwards
scalability
Scalable benchmarks are manufactured
according to user’s specifications.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 37

Six types of benchmark scalability
1. Time scalability (user selects the benchmark run time)
2. Space scalability (user adjusts the benchmark size and

its memory consumption)
3. Parametric scalability (adjustable for each benchmark)
4. Structural scalability (benchmarks have adjustable

structure; generation of benchmark series and suites)
5. Functional scalability (semantic workload

characterization: each user can select functions that are
similar to an existing or expected user workload)

6. Mixed software scalability (user programs can be
inserted as a part of benchmark workload)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 38

1. Time Scalability
Selection of benchmark program run time
according to user’s needs
Implementation:
– Benchmark program consists of independent

program modules (e.g. kernels)
– By adjusting loop parameters each kernel is

calibrated to have a specified run time on a
given machine

– Benchmark run time is adjusted by selecting
the number of kernels to be executed

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 39

2. Space Scalability

Selection of benchmark program size (both LOC
and MB) according to user’s needs (e.g. from 50
LOC to 5 MLOC; LOC ∈ {PLOC, LLOC})
Implementation:
– Benchmark program consists of independent program

modules (typically kernels)
– By adjusting array parameters each kernel is

calibrated to use a desired memory space
– Benchmark size is adjusted by selecting the number of

kernels to be executed

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 40

3. Parametric scalability

Scalability based on adjusting various
benchmark program parameters.
Typical parameters:
– The number of users (threads)
– The number of network nodes
– The size of arrays
– The run time
– The number of disk accesses

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 41

4. Structural Scalability

Adjusting of the structure of workload
Typical components:
– Selecting the structure of kernel

invocations in a benchmark program
– Selecting network topology for network

benchmarks (e.g. ring, star, grid, etc.)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 42

5. Functional Scalability
Scalability based on semantic characterization of
workload
Selection of kernels that belong to a desired
application area. E.g.:
– Numerical procedural problems
– Nonnumerical procedural problems
– Object oriented problems
– Memory and/or disk access
– System applications
– Etc.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 43

6. Mixed software scalability

In addition to kernels, synthetic
benchmark programs can also include
selected user programs
Mixed software scalability refers to the
capability to select a desired fraction of
benchmark that is based on user’s
programs (combining user functions and
kernel library functions)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 44

Space scalability details

• The size of program – a fundamental
parameter of all benchmark programs

• Program size affects the program
development time, production cost,
memory consumption, and the run time

• Program size must be precisely defined
and there are several different
definitions

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 45

Program size metrics

• There are various metrics for measuring
program size:
– Only executable lines
– Executable lines and data definitions
– Executable lines, data definitions and

comment lines
– Physical lines of code (newlines)
– Logical lines of code (complete statements)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 46

Benchmark Size Metric for C++

• LLOC = Logical Lines Of Code
• PLOC = Physical Lines of Code

• BM1 creates logical lines of code and
the size of programs is specified in
desired LLOC

• Approximately: PLOC ≈ 1.6*LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 47

Definition of LLOC for C++
For C++ programs we use the following:
LLOC = # of programming units (functions + main)

+ # of “;” (whole program except comments)
+ # of “=“ (constructor-initializer statements only)
+ # of “if” statements
+ # of “switch” statements
+ # of “while” statements
+ # of “for” statements

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 48

Arithmetic
int a; // Constructor
a = 123; // Assignment

// LLOC = 2

int a = 123; // Constructor + assignment
// LLOC = 2

a = 123; // LLOC = 1

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 49

If
if(condition)

a = 1; // LLOC = 2

if(condition)
a = 1;

else
b = 2; // LLOC = 3

Concept = Frame + inserted statements
LLOC += Keyword (if) + # of “ ; “

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 50

switch

switch (selector)
case 1: a = 1; break;
case 2: b = 2; break;
case 3: c = 3; break;
default: d = 0; // LLOC = 8

LLOC += Keyword (switch) + # of “ ; “

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 51

while

while (condition)
{

a[n] = n;
b[n] = n++;

} // LLOC = 3

LLOC += Keyword (while) + # of “ ; “

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 52

do
do
{

a[n] = n ;
b[n] = n++ ;

} while (condition) ; // LLOC = 3 (not 4)

LLOC counter is incremented on “;” but not
on keyword “do”
LLOC += # of “ ; “

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 53

for
Original for loop:

for(j=0 ; j<n ; j++)
{

a[j] = 0;
b[j] = j;

} // LLOC = 5

(# of “;” + 1 (keyword))

For loop transformed
to while:
j=0;
while (j < n)
{

a[j] = 0;
b[j] = j;
j++ ;

} // LLOC = 5

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 54

Benchmark Generators

(Manufacturing Scalable
Benchmarks)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 55

Benchmark Manufacturing
Production of benchmarks by the user,
according to user’s specification
Features: scalability, speed, and low cost
Production based on a benchmark program
generator tool
Type of benchmark products:
– Individual benchmarks
– Benchmark series
– Benchmark suites

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 56

Application Areas and Goals
Design of industrial benchmark suites
Reducing the cost of benchmarking
Increasing the credibility of benchmarking
Evaluation and comparison of language
processors (compilers, VMs, interpreters)
Computer evaluation and comparison
Test program generation
Study of workload properties
Software metrics and experimentation

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 57

BenchMaker1: Based on Recursive Expansion (REX) concept

of benchmark program development. Program is

generated by systematic insertion of blocks into

control statements, and statements into blocks.

BenchMaker2: Based on Kernel Insertion (KIN) concept. Program is

generated by systematic insertion of independent

code segments (kernels) from a library.

Benchmark Generators Design Concepts

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 58

BenchMaker 1 and the
Recursive Expansion Program

Generation Method

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 59

The concept of BM1

• Sequences, and all control structures
have the form of frames where
programmers can insert contents

• Synthetic programs can be created in
the same way

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 60

Block Containing Statements

int main(arguments)

{ // block

}

Statement

Statement

Statement

Statement

int func(arguments)

{ // block

}

Statement

Statement

Statement

Statement

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 61

Classification of Statements

• Expandable statements: contain
frames (blocks) and can be expanded
by inserting statements into frames

• Terminal statements: fixed contents
that cannot be expanded
– Simple (arithmetic)
– Compound (fixed blocks, e.g. kernels)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 62

Expandable Statement
if (condition)

{

}

else

{

}

Block of statements

Block of statements

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 63

Expansion of Statements

int main(arguments)

{ // block

}

Terminal
Statement

Terminal
Statement

Expandable
Statement

Terminal
Statement

Expandable
Statement

Expandable
Statement

Terminal
Statement

Terminal
Statement

Expandable
Statement

Terminal
Statement

Terminal
Statement

Terminal
StatementTerminal

Statement

7

6

8

9
1

5
4

3

2

1

Expansion
level (depth) 2

Expansion
level (depth) 3

Expansion
level (depth) 1

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 64

The Concept of Breadth

{

statement;

statement;

statement; // B = 5

statement;

statement;

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 65

The Concept of Depth

{ // 0

{ // 1

{ // 2

statement; // D = 2

}

}

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 66

REX Program Model
• Each block contains one or more statements.
• Each control statement contains one or more

blocks. An example of two blocks:
if(condition) {block} else {block}

• Create programs by systematically inserting
blocks into statements and statements into
blocks (stepwise refinement).

• When the generated program attains a desired
size, insert a “terminal block” (either an
arithmetic statement or an executable kernel).

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 67

REX Model
Recursion

While(Breadth<MaxBreadth)

append STATEMENT();

BLOCK

if(Size>MaxSize)

return terminal
statement;

else

return a randomly
selected statement
that includes one
or more BLOCK();

STATEMENT

STOP

START

EntryEntry ReturnReturn

string STATEMENT(…)

{ ……………

BLOCK(…);

}

string BLOCK(…)

{ …………….…….

STATEMENT(…);

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 68

A toy REX generator [1/3]
string STATEMENT(int D, int B, int selector) // D = depth, B = breadth

{

if (++D > maxDepth) selector = 0; // End of recursive expansion

switch (selector)

{

case 0: return assignment() + "\n"; // Assignment terminator

case 1: return "if" + condition() + "\n" + BLOCK(D, B)+ "\n";

case 2: return "if" + condition() + "\n" + BLOCK(D, B) + "\n" +

indent(D) + "else\n" + BLOCK(D, B)+ "\n";

case 3: return "while" + condition() + "\n" + BLOCK(D, B)+ "\n";

case 4: return "do\n" + BLOCK(D, B) + " while" + condition()+";\n";

}

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 69

A toy REX generator [2/3]

string BLOCK(int D, int B) // D = depth, B = breadth

{

string block = indent(D) + "{\n" ;

for(int i=0; i<B; i++)

block += indent(D+1) +

STATEMENT(D, 1+rand()%maxBreadth, rand()%5);

return block + indent(D) + "}";

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 70

A toy REX generator [3/3]
void main(void)

{

fstream file;

srand(time(NULL)); // randomize

cout << "\n\nToy program generator\n\n"

<< "Maximum Breadth = "; cin >> maxBreadth;

cout << "Maximum Depth = "; cin >> maxDepth;

file.open("demo.cc", ios::out);

file << "void main(void)\n{\n" +

indent(1) + "int " + init(nvars, ",") + ";\n" +

indent(1) + init(nvars, "=") + "=1;\n" +

indent(1) + STATEMENT(0, maxBreadth, 1+rand()%4) + "}\n";

cout << "demo.cc completed.\n";

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 71

#include<iostream.h>
void main(void)
{

int I,a,b,c,d,e,f,g,h,i,j,k,l,m,n;
a=b=c=d=e=f=g=h=i=j=k=l=m=n=1;
long S=0, G[20000]; for(I=0; I<20000; I++) G[I]=0;
while(++G[2]%3) // 1,2,0,1,2,0,…
{

if(++G[0]%2) // 1,0,1,0,1,…
{

i = k-a-k*b+f+e+d-d-m*m+h+g-f;
l = m+d-n-m+n*i+n;

}
else
{

e = h*f-g-l*f+a+a*m;
h = a-h*h-l+k*k-l*d+e-l*m;

}
while(++G[1]%3) // 1,2,0,1,2,0,…
{

b = d-m-j+m-j+k-b+a+e-g-i+f*g;
j = k*f*m*b*h-d+l+b;

}
}
for(I=0; I<3; S+=G[I], I++)

cout << G[I] << ((I+1)%10 ? ' ':'\n');
cout << "\nNumber of control statements = 3";
cout << "\nExecuted control statements = " << S << '\n';

}

$ g++ demo.cc
$./a
2 6 3
Number of control statements = 3
Executed control statements = 11

A Sample Program

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 72

$ time ./tg

Toy program generator

Maximum Breadth = 7
Maximum Depth = 7
Loop Repetition = 7
demo.cc completed.

real 0m7.492s
user 0m3.327s
sys 0m0.046s

$ wc -l demo.cc
100755 demo.cc

$ time g++ demo.cc

real 13m16.637s
user 7m6.169s
sys 0m10.341s

$ ls -l demo.cc a.exe
2673681 Oct 9 11:00 a.exe
3570094 Oct 9 10:43 demo.cc

Density = 26.5 Bytes / PLOC

≈ 70 Bytes / LLOC

Experiments With Compilable Benchmark Programs [1/2]

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 73

$ time ./tg

Toy program generator

Maximum Breadth = 7
Maximum Depth = 7
Loop Repetition = 10
demo.cc completed.

real 0m4.907s
user 0m2.936s
sys 0m0.108s

$ wc -l demo.cc
89675 demo.cc

$ time g++ demo.cc

real 10m55.547s
user 6m42.356s
sys 0m8.419s

$ ls -l demo.cc a.exe
2586641 Oct 9 12:02 a.exe
3193103 Oct 9 11:49 demo.cc

Time ./a
- - - - - - - - - - - - - - - - - -
Number of control statements = 11603
Executed control statements = 973081553

real 1m1.831s
user 0m59.686s
sys 0m0.077s

Density = 28.8 Bytes / PLOC

Experiments With Compilable Benchmark Programs [2/2]

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 74

Benchmaker 1.6 demo:
Generating C++ programs
1. Make and execute a 500 LLOC program:

10 functions, 50 PLOC/function, uniform
distribution of control structures

2. Make and execute a 20,000 LLOC
program: 40 functions, 500 LLOC/function,
nonuniform distribution of control
structures

3. Create a 1,000,000 LLOC program,
uniform distribution of control structures

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 75

500 LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 76

500 LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 77

500 LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 78

Beginning of generated
C++ program

500 LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 79

End of generated
C++ program

500 LLOC

End of generated
C++ program

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 80

20,000 LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 81

20,000 LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 82

20,000 LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 83

20,000 LLOC

A segment of
generated main
C++ program

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 84

20,000 LLOC

Correct
compilation with
MS Visual C++
6.0 compiler

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 85

1,000,000
LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 86

1,000,000
LLOC

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 87

1,000,000
LLOC

1.6 GHz Intel
Pentium M
laptop:

Tgen = 20
seconds

Speed = 50
KLLOC/sec

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 88

Summary of BM1 properties
• Easy specification of parameters
• Uniform and nonuniform distribution of control

structures
• Very fast code generation (even on slow hardware)
• Very accurate control structure distribution
• Very accurate program size
• Correct compilation
• Possible execution
• Generation of individual benchmarks and their series
• Limited diversity of code (e.g. scalar data only, no file

input/output, only procedural code)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 89

BenchMaker 2 and the Kernel
Insertion Program Generation

Method

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 90

Goals
Flexible adjustment of program structure
Flexible adjustment of program size
Flexible adjustment of execution time
Semantic interpretation of workload
characteristics
Evaluation and comparison of compilers
for different types of workload
Evaluation and comparison of computer
performance for different types of workload

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 91

Kernels
• Kernels are sequential segments of code that have

a standardized structure:
– Data definition and initialization
– Procedural and OO data processing
– Verification of correct results
– Calibrated to have standardized (constant) run time (e.g.

1 sec) in order to be equally significant
• Kernels also have a clear semantic interpretation.

They represent recognizable and frequently used
operations; e.g.: sort, search, matrix operations
(multiplication, inversion), disk operations, etc.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 92

Kernel-Related Issues

Kernel structure
Kernel library
Workload characterization by kernel distribution
Benchmark workload structure
Benchmark workload size
BenchMaker 2 program generator
Kernel calibration

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 93

KIN method
Create a library of important and frequently used
executable program segments called kernels.
Kernels must be self contained (generate data,
process data, and test the validity of results)
Select a distribution of kernels that characterizes a
desired computer workload.
Select a desired structure of benchmark workload.
Select a desired size of benchmark workload.
Create the benchmark workload by adding kernels
according to the selected distribution. Stop when
the resulting benchmark program attains the
desired size.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 94

The Concept of Kernel Insertion

Kernel
library

BENCHMARK

GENERATOR

B1 B2 Bn

CLIENT
(remote
or local)

REQUEST

RESULT

Generated
benchmark
series or
suites

Client
benchmark
modules

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 95

L = Programming language code:
C denotes C++
B denotes C language
J denotes Java
F denotes Fortran

A = Area code (0...9) for main kernel areas
G = Group code (0...9) inside an area
S = Subgroup code (0...9) inside a group
= Kernel ID (00, 01, …) inside the subgroup

L A G S # #

Kernel Naming and Classification

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 96

Areas of Classification

1. Processor performance kernels
2. Memory access kernels (paging and

caching)
3. Disk and peripherals access kernels
4. System kernels
5. User programs

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 97

Kernel Classification (1/9)
1 PROCESSOR PERFORMANCE KERNELS

11 Nonnumerical procedural kernels
110 Miscellaneous
111 Control structures and function calls
112 Arrays (including C-strings)
113 Strings (the standard class string)
114 Records/structs
115 Dynamic lists, queues, and trees
116 Search, sort, and merge
117 Recursive nonnumerical problems
118 Combinatorial problems

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 98

Kernel Classification (2/9)
1 PROCESSOR PERFORMANCE KERNELS

12 Seminumerical procedural kernels
120 Miscellaneous
121 Integer arithmetic and counters
122 Bitwise and integer operations/functions
123 Graph algorithms
124 Prime numbers
125 Random numbers and Monte Carlo methods
126 Cryptography
127 Recursive seminumerical problems

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 99

Kernel Classification (3/9)
1 PROCESSOR PERFORMANCE KERNELS

13 Numerical procedural kernels
130 Miscellaneous
131 Scalar floating-point arithmetic
132 Library and special functions
133 Arrays
134 Polynomials
135 Matrices
136 Integrals and differential equations
137 Recursive numerical problems
138 Statistics

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 100

Kernel Classification (4/9)
1 PROCESSOR PERFORMANCE KERNELS

14 Object oriented kernels
140 Miscellaneous
141 Object construction/destruction/manipulation
142 Overloading operators
143 Inheritance and multiple inheritance
144 Polymorphism
145 Abstract classes
146 Templates
147 Exception handling

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 101

Kernel Classification (5/9)
2 MEMORY ACCESS KERNELS (PAGING &

CACHING)

21 Static memory access
210 Miscellaneous
211 Uniform distribution, multiple localities
212 Normal distribution, multiple localities

22 Dynamic memory access
220 Miscellaneous
221 Uniform distribution, multiple localities
222 Normal distribution, multiple localities

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 102

Kernel Classification (6/9)
3 DISK AND PERIPHERALS ACCESS KERNELS

31 Disk access
310 Miscellaneous
311 Sequential access
312 Random access

32 Other peripheral kernels
320 Miscellaneous
321 VDU and graphics
322 Archival tape access

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 103

Kernel Classification (7/9)
4 SYSTEM KERNELS

41 Processes
410 Miscellaneous
411 Process create and delete
412 Multicore

42 Threads
420 Miscellaneous
421 Thread create and delete
422 Hyperthreaded

43 Signals and alarms
430 Miscellaneous
431 Signals
432 Alarms

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 104

Kernel Classification (8/9)
4 SYSTEM KERNELS

44 Pipes and other process communication
mechanisms
440 Miscellaneous
441 Pipe communication

45 Networking and data communication
450 Miscellaneous
451 Socket communication

46 File management
460 Miscellaneous
461 Sequential access
462 Random access
463 Indexed access

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 105

Kernel Classification (9/9)

5 USER PROGRAMS

50 Miscellaneous
500 Miscellaneous

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 106

Kernel Design Concepts (1/2)

Kernels must be self-contained (designed
as a block that can be inserted at any
place in a benchmark program)
To secure maximum mobility of kernel
code, its dependence on environment
should be kept at minimum (usage of only
a few global variables).
Kernels must be resistant to elimination by
optimizing compilers.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 107

Kernel Design Concepts (2/2)

Input data must be internally generated.
The number of lines of code in a kernel
must be limited to secure sufficient
granularity of benchmark workload.
It is necessary to include a validation of
results to verify both the correctness of
algorithm, and the proper functioning of
tested hardware and software.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 108

Standard Kernel Structure
{ // Definition of local data objects

char* name = “<kernel code>: <kernel name>”;
for(I=0; I<SEC; I++) // SEC = desired run time in sec

for(J=0; J<RATE; J++) // 1 second calibration loop
{

// Local data initialization // Synthetic data
// Computation of results // Any algorithm
// Validation of results // Computation of the
if(results_incorrect) // results_incorrect flag
{ // Error message

exit(1); // Abort benchmark execution
}

}
terminator(name); // Kernel termination function

} // (kernel/benchmark termination)

TIME = O(SEC)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 109

Benchmark Terminator Function
void terminator(char name[])
{

double RunTime= sec() - STARTTIME; // Benchmark run time (from
KERNEL_COUNT++; // start to this point)

if(TRACE) cout << "Kernel Count = " << KERNEL_COUNT
<< " Seconds" << RunTime << " " << name << endl;

// End of program test

if((MAXKERNEL>0 && MAXKERNEL <= KERNEL_COUNT) ||
(MAXSEC > 0. && MAXSEC <= RunTime))

{
cout << "\n\nNumber of executed kernels = " << KERNEL_COUNT

<< "\nRun time [total seconds] = " << RunTime
<< "\n\nEnd of measurement\n\n";

exit(1);
}

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 110

Global Parameters
SEC : desired kernel run time in seconds
MAXSEC : desired benchmark run time in seconds
KERNEL_COUNT : a counter used by the
benchmark program to control the number of
executed kernels
MAXKERNEL : desired number of executed
kernels
RATE : the number of kernel initialization-
computation- validation cycles per second
(adjusted during the kernel calibration process)
TRACE : benchmark program trace flag

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 111

Benchmark Generation Process
Select a desired BENCHMARK_PROGRAM_SIZE

Select a desired benchmark program structure

KERNEL SELECTION: Select the most appropriate kernel
using either random or deterministic selection technique

PROGRAM EXPANSION: Insert the selected kernel in the
desired benchmark program structure

PROGRAM SIZE MEASUREMENT:

SIZE = number of lines of code in the expanded program

do while (SIZE < BENCHMARK_PROGRAM_SIZE) ;

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 112

Kernel Calibration

Adjust the kernel SIZE parameter to get
a desired use of memory
Adjust the internal SEC parameter to
get a desired run time T = O(SEC)
Calibration is performed using an
independent calibration program tool
Kernels are stored in kernel library

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 113

Calibration parameters

• r = the repetition count
• t = run time that corresponds to r
• T = desired (calibrated) run time
• R = the repetition count value that corresponds

to the desired value of T (denoted in programs
as RATE, the number of repetitions per second)

• Linear model: t = ar + b, a=const., b=const. (b
is usually negligible)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 114

Calibration process
.,, constbconstabart ==+=

)/())((

),(),(
,,

121211

1

1

12

12

111212

2211

ttrrtTrR
rR
tT

rr
tt

a

rRatTrratt
baRTbartbart

−−−+=

−
−

=
−
−

=

−=−−=−
+=+=+=

R should be greater than 100 to provide accurate approximation of T

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 115

BM2 System Overview

Outputs
spec.out
LLOC1.lan
LLOC2.lan
LLOC3.lan
…………..
LLOCk.lan

spec.in
SEC
ProgType
LOCmin
LOCmax
LOCstep
LAGS## F1
LAGS## Fn

BM2 Engine

Kernels

LAGS##
………..
LAGS##

Web Server (+JSP)

INTERNET

Remote User

BM2 user command line menu interface

BenchMaker GUI

Local Console User

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 116

Workload Characterization
Representative set of kernels (those that are most
similar to user’s expected or existing activities)
Individual kernel weights (relative frequencies of use
of the type of processing implemented by a kernel)
The length of generated kernel-based benchmark
(expressed in logical lines of code, LOC, which are
generally defined as high-level language statements)
Individual kernel run times (SEC, seconds per
kernel), that affect the total run time of the generated
benchmark.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 117

Benchmark Generation Methods

Kernel sequence (SEQ) model
Kernel function (KF) model
Minimum size canonic (MC) loop-select
model
Adjustable size canonic (AC) loop-select
model
Kernel-terminated recursive expansion
(REX) model

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 118

SEQ: Kernel Sequence Model
void main(void) Kernels are randomly or
{ deterministically selected

{ K33 } according to a desired kernel
distribution function

{ K17 }

{ K44 }
while(LOC(main) < desired_SIZE)

{ K19 } {
Select kernel;

{ K33 } Append kernel;
}

{ K41 }

{ K44 }
............
{ K93 }

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 119

SEQF: Kernel Function Model
int ERROR; // Global kernel error code
int F1(void)
{

{ K19 } // Randomly selected kernel
return ERROR ; // Kernel error code

}
..............................
int Fn(void)
{

{ K41 } // Randomly selected kernel
return ERROR ; // Kernel error code

}
void main(void)
{ long int sum = 0 ;

sum += F1() ;
.....................
sum += Fn() ;
cout << sum;

}

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 120

MC: Minimum Size Canonic Loop-Select Model

for(i=0; i<TIME; i++)
switch(selector())
{

case 00: { K00 } ; break;
case 01: { K01 } ; break;
case 02: { K02 } ; break;
··
case 99: { K99 } ; break;

}
TIME = execution time parameter.
selector() = kernel distribution function.
Each kernel appears only once.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 121

AC: Adjustable Size Canonic Loop-Select Model

for(i=0; i<TIME; i++)
switch(uniform()) // 0 ≤ uniform() ≤ SIZE
{ case 0000: { K19 } ; break;

case 0001: { K02 } ; break;
case 0002: { K02 } ; break;
case 0003: { K02 } ; break;
case 0004: { K19 } ; break;
··
case SIZE: { K41 } ; break;

}
TIME = execution time parameter. Kernels may
repeat. Their frequency is specified by the
desired SIZE and the kernel distribution function.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 122

// G[] = global counter array. Initially long G[n]=0, n=1,…,N
if (++G[13]%2) // 1, 0, 1, 0, 1, …
{

while (++G[14]%5) // 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …
{

{ K19 } // Kernel termination
if (++G[15]%2) // 1, 0, 1, 0, 1, …
{

{ K17 } // Kernel termination
}

}
}
else
{

for(; ++G[16]%5 ;) // 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …
if (++G[17]%2) // 1, 0, 1, 0, 1, …

{ K64 } // Kernel termination
else

{ K17 } // Kernel termination
}

REX: Kernel-terminated recursive expansion model

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 123

Workload Characterization by Kernel
Distribution

iesprobabilit kernel desired,...,,
kernels,...,,

21

21

=
=

n

n

PPP
KKK

Kernel selection techniques:

• Minimization of error criterion (math approach)

• Random selection according to given distribution

• Deterministic Optimum Selection (DOS)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 124

Kernel Selection Problem [1/11]

1 2

1 2

1 2

1 2

1 1 2 2

total number of available kernels
, ,..., kernels
, ,..., kernel sizes [LOC]
, ,..., kernel frequencies in a given program

... total number of kernels
... total

=
=

=

=

+ + + = =

+ + + =

n

n

n

n

n n

n
K K K
L L L
f f f
f f f F
f L f L f L

1 2

 benchmark size
 desired size of benchmark program [LOC]

, ,..., desired kernel probabilities
, 1,..., : achieved kernel probabilities

=
=

= =
n

i i

L
P P P
p f F i n

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 125

ies.probabilit kernel desired and size
desired a hasbenchmark resulting that theso

,...,, sfrequencie kernel optimum Find
 :PROBLEM

sizebenchmark desired
iesprobabilit kernel desired,...,,

:INPUTS

21

21 n
fff

L
PPP n

=
=

Kernel Selection Problem [2/11]

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 126

LLfLfLf

P
fff

ffffE

nn

n

i
i

n

i
n

≅+++

−
+++

=∑
=

...
:condition following with the
...

),...,,(

erroron distributi kernel theMinimize
:problemselection kernel theofStatement

2211

1 21
21

Kernel Selection Problem [3/11]

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 127

LLfLfLf

P
fff

ffffE

fff

n

n

i
i

n

i

fff

n

n
n

n

≅+++

−
+++

= ∑
=

*
2

*
1

*

1 21,...,,

...
and

...
),...,,(

 thatso ,...,, find s,other wordIn

21

21
21

21

min

Kernel Selection Problem [4/11]

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 128

()

goals)both satisfy usly simultaneo (to 1,10

...
)1(...

),...,,(
/1

1 21
11

21

+∞≤≤<<

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+++
−+−++

=

∑
=

rW

P
fff

fWLLfLfW

fffC
rr

n

i
i

n

ir
nn

n

Kernel Selection Problem [5/11]

Approach #1. Minimize a global error criterion function that
combines two goals: a desired program size, and a desired
kernel distribution.

This function can be minimized using Nelder-Mead algorithm.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 129

Kernel Selection Problem [6/11]

Advantage of the mathematical approach:

• It is possible to generate the exact optimum solution

Disadvantages:

• The solution depends on parameters W and r. It may
be necessary to readjust parameters for different
numbers and distributions of kernels.

• Minimization can find a local minimum different from
the optimum solution.

• Minimization can be time consuming.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 130

Kernel Selection Problem [7/11]

Approach #2: Random selection according to desired
kernel probability distribution.

do{

r = (random integer from 1 to n distributed according

to any desired kernel distribution) ;

Insert kernel in benchmark program;

size = (number of lines of code after the addition of
kernel);

} while (size < L);

rK

rK

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 131

Kernel Selection Problem [8/11]

Advantages of random selection:

• Simplicity

• Speed (constant kernel selection time)

• Appropriate for very large programs

Disadvantage:

• Large and random distribution errors for small
and medium numbers of kernels

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 132

Kernel Selection Problem [9/11]

Approach #3: Deterministic Optimum Selection (DOS)
according to desired kernel distribution.

do{

r = (integer from 1 to n selected by DOS according

to desired kernel distribution) ;

Insert kernel in benchmark program;

size = (number of lines of code after the addition of
kernel);

} while (size < L);

rK

rK

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 133

Kernel Selection Problem [10/11]

)(min)(where kernelSelect

1,
1...

1...
1

)(

erroron distributi kernel theminimizesthat
kerneladditeration each In :Algorithm DOS

1

1 21

21

jereK

njP
fff

f

P
fff

f
je

njr

n

ji
i

i
n

i

j
n

j

≤≤

≠
=

=

≤≤−
++++

+

+−
++++

+
=

∑

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 134

Kernel Selection Problem [11/11]

Advantages of DOS approach:

• Simplicity

• Close to optimum in each insertion step

• Accurate for any program size

Disadvantage:

• Each kernel selection needs time O(n)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 135

BenchMaker2 Engine

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 136

Algorithm
1. Select the structure of the generated program
2. Select the desired size of program (LLOC or K)
3. Select the desired distribution of kernels
4. Select the optimum kernel according to the

deterministic selection algorithm (DSA)
5. Insert the selected kernel in the generated

program
6. If the desired size is not achieved go to (4).

Otherwise, stop.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 137

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 138

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 139

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 140

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 141

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 142

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 143

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 144

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 145

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 146

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 147

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 148

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 149

Execution of SEQF10K without trace (TRACE=0)

Execution of SEQF10K with trace (TRACE=1)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 150

Summary of BM2 properties
Flexible adjustment of program structure
Easy adjustment of program size
Executable programs, easy adjustment of run time
Semantic interpretation and unlimited adjustment of
workload characteristics (procedural, object oriented, file
I/O, numeric, nonnumeric, arrays, etc.)
Almost all code is expertly generated by humans
Fast code generation and correct compilation
Scalability and calibration
Expandability of library kernels
Suitability for evaluation and comparison of computer
performance for different types of workload
Suitability for open-source development

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 151

Towards Open Source
Benchmark Manufacturing

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 152

Basic Goals

Create an environment where users can
manufacture scalable benchmark workloads
based on their individual needs
Create a user community that contributes to
an open-source kernel library
Encourage research in the area of workload
characterization, benchmark scalability, and
program cloning

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 153

BenchMaker User Interface (1/9)
Web based, dynamic interface
JSP & Java based, outputs are pure HTML
Most browsers are supported
Tomcat4.1 on the server side
List of kernels are read at run-time from
configuration files and the interface adapts itself to
changes
Simple to use
Support for e-mail retrieval of benchmarks
Supports multiple users and projects

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 154

BenchMaker User Interface (2/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 155

BenchMaker User Interface (3/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 156

BenchMaker User Interface (4/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 157

BenchMaker User Interface (5/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 158

BenchMaker User Interface (6/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 159

BenchMaker User Interface (7/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 160

BenchMaker User Interface (8/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 161

BenchMaker User Interface (9/9)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 162

Applications of
Benchmark Program

Generators

(Compiler Performance and
Computer Performance)

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 163

Compiler Performance Analysis

Compile time
Memory consumption

Object program
Executable program

Maximum program size
Nonlinear phenomena
Execution time

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 164

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500
Lines of Code L

C
om

pi
le

 T
im

e
(s

ec
on

ds
)

C = 0.0013 L + 0.9161

Visual C++

3.5 sec

Compile Time (C)
as a Function of
Program Size (L)

1,10 ≥+= qLttC q

This analysis is based on
3500 synthetic benchmark
programs generated using
the BM1 program generator

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 165

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500
Lines of Code L

C
om

pi
le

 T
im

e
(s

ec
on

ds
) C = 0.004 L + 2.4595

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500
Lines of Code L

C
om

pi
le

 T
im

e
(s

ec
on

ds
)

C = 0.0014 L + 3.3544

Cygwin g++Borland C++

6 sec
10 sec

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 166

0

50

100

150

200

250

300

0 500 1000 1500
Lines of Code L

C
om

pi
le

 T
im

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500
Lines of Code L

C
om

pi
le

 T
im

e
(s

ec
on

ds
)

60 sec

CodeWarrior C++ Intel C++

062.261058.928.3 LC −⋅+=

???

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 167

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1000 2000 3000

Lines of Code L

O
bj

ec
t P

ro
gr

am
 S

iz
e

(b
yt

es
)

Mobj = 58.291 L + 3327.6

Visual C++

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

0 500 1000 1500 2000 2500
Lines of Code L

O
bj

ec
t P

ro
gr

am
 S

iz
e

(b
yt

es
)

Mobj = 77.523 L + 2577.3

Cygwin g++

Comparison of Object Program Sizes

117 KB154 KB

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 168

400000

450000

500000

550000

600000

650000

700000

0 500 1000 1500 2000 2500
Lines of Code

Ex
ec

ut
ab

le
 S

iz
e

(b
yt

es
)

M = 74.537 L + 482242

Memory Consumption
(M) as a Function of
Program Size (L)

LmmM 10 +=

617 KB

Cygwin g++

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 169

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1000 2000 3000

Lines of Code L

O
bj

ec
t P

ro
gr

am
 S

iz
e

(b
yt

es
)

Mobj = 58.291 L + 3327.6

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 1000 2000 3000
Lines of Code L

Ex
ec

ut
ab

le
 S

iz
e

(b
yt

es
)

M = 46.39 L + 57181

Visual C++ Visual C++

Object Program Size vs. Executable Program Size

146 KB

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 170

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500
Lines of Code L

O
bj

ec
t P

ro
gr

am
 S

iz
e

(b
yt

es
)

Mobj = 47.694 L + 13218
40000

50000

60000

70000

80000

90000

100000

110000

0 500 1000 1500
Lines of Code L

Ex
ec

ut
ab

le
 S

iz
e

(b
yt

es
)

M = 31.137 L + 55582

Nonlinear Phenomena – Intel C++ Compiler

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 171

Nonlinear Phenomena – Metrowerks CodeWarrior

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 500 1000 1500 2000 2500
Lines of Code L

O
bj

ec
t P

ro
gr

am
 S

iz
e

(b
yt

es
)

Mobj = 81.573 L + 166464

100000

150000

200000

250000

300000

350000

0 500 1000 1500 2000 2500
Lines of Code L

Ex
ec

ut
ab

le
 P

ro
gr

am
 S

iz
e

(b
yt

es
)

M = 54.553 L + 191915

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 172

1.62

1.98

2.30

2.34

1.51

1.18

1.34

1.00

1.02

0.0 1.0 2.0 3.0

BC55-default

CW53-default

GPP-default

VC6-default

BC55-speed

CW53-speed

GPP-speed

INTC-speed

VC6-speed

C
yr

ix
 6

x8
6M

X
ba

se
d

Sy
st

em

Mean Relative Execution Times

1.46

1.54

2.06

2.02

1.45

1.00

1.25

1.05

1.08

0.0 0.5 1.0 1.5 2.0 2.5

BC55-default

CW53-default

GPP-default

VC6-default

BC55-speed

CW53-speed

GPP-speed

INTC-speed

VC6-speed

AM
D

 K
6-

2
ba

se
d

Sy
st

em

Mean Relative Execution Times

2.44

2.80

3.71

3.17

2.27

1.36

1.84

1.00

1.33

0.0 1.0 2.0 3.0 4.0

BC55-default

CW53-default

GPP-default

VC6-default

BC55-speed

CW53-speed

GPP-speed

INTC-speed

VC6-speed

In
te

l P
en

tiu
m

 II
 b

as
ed

 S
ys

te
m

Mean Relative Execution Times

Execution Time Comparison

Compilers: Imprise Borland C++ 5.5, Intel C/C++ Compiler 4.5,
Metrowerks CodeWarrior 5.3, Microsoft Visual C++ 6.0, and Redhat
Cygwin b20 (based on GNU compiler tools)

Processors: Intel Pentium II 300 , AMD K6-2 350 , Cyrix 6x86MX-PR166

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 173

1.00

0.78

0.58

0.47

0.38

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Int
el

Visu
al C

++
Code

 W
arr

ior
Borl

an
d

Cyg
win

Compiler

Pe
rf

or
m

an
ce

Performance ranking of compilers using a Pentium based system

.10,
2/)1(

1

1

2/)1(

0

0 ≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−−

T

W

B

A

W

B

AW W
m
m

m
mrR

TT

T

n

nB

nA

B

A

B

A

T
T

T
T

T
Tr

/1

2

2

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅=

1010

1

1

0

0

1

1

0

0
ttmm

T

W

B

A

W

B

A

W

B

A

W

B

AW

t
t

t
t

m
m

m
mrR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Execution time ratio:

Global criterion:

Release criterion (compilation speed
omitted):

WT = 0.6

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 174

Performance Comparison Model

.,...,,,

[%]

nkWW

R
R

P

k

n

k
k

Wn

k jk

ik
ij

k

1101

100

1

1

=<<=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∑

∏

=

=

A general comparison of compilers can be based on using
the geometric mean with equal rates (W1 =…= Wn = 1/n).

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 175

Using Calibration for
Performance Comparison (1/3)

VCO= Microsoft Visual C++ 6.0, release version
VCD = Microsoft Visual C++ 6.0, debug version
ICO = Intel C++ 7.1, optimized version
ICD = Intel C++ 7.1, default version
BCO= Borland C++ 5.5, optimized version
BCD = Borland C++ 5.5, default version
CGO= Cygwin g++ 3.2, -O3 optimized version
CGD= Cygwin g++ 3.2, default version
LGO = Linux g++ 3.2.2, -O3 optimized version
LGD = Linux g++ 3.2.2, default version

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 176

Using Calibration for
Performance Comparison (2/3)

AMD Athlon 1.0GHz, 128MB RAM

31.29%

32.58%

38.12%

87.09%

100.00%

98.69%

76.17%

71.14%

41.95%

31.29%

0% 25% 50% 75% 100%

CGD

VCD

LGD

BCD

BCO

VCO

LGO

CGO

ICD

ICO

Relative Rates

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 177

Using Calibration for
Performance Comparison (3/3)

Intel Centrino 1.4GHz, 512MB RAM

23.89%

26.11%

32.94%

33.26%

53.51%

60.45%

60.87%

99.81%

100.00%

25.62%

0% 25% 50% 75% 100%

CGD

LGD

VCD

BCD

BCO

LGO

CGO

VCO

ICO

ICD

Relative Rates

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 178

Observations (1/3)
Various software environments offer a wide
spectrum of different performance levels. On
the same hardware the proper selection of
compiler can sometimes produce dramatic
speedup. Optimum versions of compilers can
differ in performance up to 3 times. Versions
with different parameters can differ up to 4
times.
Debug versions of compilers substantially
slow down the execution process (typically 2
to 3 times).

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 179

Observations (2/3)
Intel C++ compiler consistently outperforms
competitors on both tested machines.
Intel C++ compiler advantage over other
compilers is bigger for Centrino (Pentium M)
then for AMD.
One of unexpected results is that on
measured machines the Cygwin environment
with GNU C++ outperforms the native Linux
environment. In the case of AMD we used
Red Hat Linux, and in the case of Centrino
we used Mandrake Linux.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 180

Observations (3/3)

Some C++ compilers (e.g. Intel) use default
version that is close to the most optimized
version.
Some compilers have default and/or debug
versions significantly slower than the
optimized version.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 181

Conclusions
Exponential growth of computer
performance causes a need for fast
development of new benchmarks
Benchmark program generators are tools
that provide:

High speed and low cost of test and
benchmark program generation
Flexibility in workload characterization
Scalability of resulting workloads
A way towards program cloning

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 182

Primary source

Dujmović, J.J., Automatic Generation
of Benchmark and Test Workloads.
Proceedings of the First Joint
WOSP/SIPEW International
Conference on Performance
Engineering, ISBN 978-1-60558-563-
5, pp. 263-273, San Jose, CA, USA
Jan 28-30, 2010.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 183

Other publications
Dujmović, J.J., E. Horvath, H. Lew, Benchmark Program Generator for

Compiler Performance Analysis. The 25th International Conference for the
Resource Management and Performance Evaluation of Enterprise Computing
Systems. CMG 99 Proceedings, Vol. 2, pp. 838-847, 1999.

Lew, H. and J.J. Dujmović, Performance Evaluation and Comparison of
C++ Compilers. The 26th International Conference for the Resource Management
and Performance Evaluation of Enterprise Computing Systems. CMG 2000
Proceedings, Vol. 1, pp. 241-252, 2000.

Dujmović, J.J. and H. Lew, A Method for Generating Benchmark Programs.
The 26th International Conference for the Resource Management and Performance
Evaluation of Enterprise Computing Systems. CMG 2000 Proceedings, Vol. 1, pp.
379-388, 2000.

Dujmović, J.J. and M. Cengiz, A Kernel Library for Benchmark Program
Generators. CMG 2003 Proceedings, Vol. 2 pp. 609-618, 2003.

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 184

Thanks!

BenchMaker 1&2 Copyright © 2010 by Jozo Dujmović 185

Questions?

