ENICS 2008 Invited Speech

Hyperspectral imaging: sensors, algorithms and challenges

Dr. Javier Calpe-Maravilla GPDS - Department of Electronics Engineering IPL Imaging Processing Laboratory Analog Devices Design Center - Spain

CONTENTS

Problem definition

- Filtering methods
- Sensors
- Data processing issues
- Applications
- Future trends

PixelFly monochrome CCD camera

Spectral Response of a CMOS Sensor with RGB CFA

Problem definition

VNIVERSITAT DÖVALÈNCIA

Imaging Spectrometry Concept

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Rob Green, JPL

Problem definition: Image formation

Hyperspectral imaging: sensors, algorithms and challenges Courtesy Luis Alonso, UV-EG

CONTENTS

Problem definition

- Filtering methods
- Sensors
- Data processing issues
- Applications
- Future trends

Filtering methods: Point spectrometer

Analytical Spectral Devices, Inc. FieldSpec Pro FR

Principle of measurement	 VIS-NIR: A fixed concave holographic reflective grating disperses the light onto a fixed photodiode array SWIR: A rotating concave holographic reflective grating scans the light onto a fixed single InGaAs detector 				
Spectral range	350-2500 nm				
Spectral resolution	3 nm @ 700 nm 10 nm @ 1400 nm & 2100 nm				
Detectors	1 512 element Si photodiode array 350-1000nm 2 TE cooled, graded index InGaAs photodiodes 1-2,5um				

Tri-CCD to Bayer pattern

Mosaic Capture

In conventional systems, color filters are applied to a single layer of pixel sensors in a tiled mosaic pattern.

The filters let only one wavelength of light-red, green, or blue-pass through to any given pixel location, allowing it to record only one color.

As a result, mosaic sensors capture only 25% of the red and blue light, and just 50% of the green.

ImSpector from Specim, Inc

Filtering methods

FPA with spectral filter wheel

IMAGE SCENE

Key Features	User Advantages/Implications
Multiple spectral bands synthesized using different <u>spectral filters in a wheel</u>	Straightforward implementation <u>Spectral/spatial information not simultaneous</u> Useful for <u>several fix spectral bands</u> using a single filter wheel Dual color filter wheel implementation can result in large number of bands

Multiple FPAs with spectral separation elements

Key Features	User Advantages/Implications
Diochroic <u>elements used to</u>	Straightforward implementation for scanners or
<u>spectrally separate</u> and route	starers
light in specific spectral	<u>Simultaneous spatial/spectral</u> information
bandpasses to individual focal	Straylight/radiometry implications
planes	<u>Small number discrete spectral bands</u>

Multiple FPAs with spectral separation elements

Effective Camera Response Bands

FluxData FD-1665 3CCD Multispectral Cameras

	Mu
	syn
	spe
VNIVERSITAT	
DÖVALÈNCIA	Hype

Key Features	User Advantages/Implications
Multiple spectral bands synthesized using the same <u>spectral tunable filter</u>	Straightforward implementation <u>Spectral/spatial information not simultaneous</u> Useful for <u>several tunable spectral bands</u> using a single filter

Filtering methods: LCTF

Liquid Crystal Tunable Filter

Formed by a stack of polarizers and tunable retardation liquid crystal plates

Combining the transmission of all the plate only a narrow band can be transmitted

Changing the bandpass is very fast (~50 ms)

 $T_{Total} = T_1 * T_2 * T_3 * T_4 * T_5 * T_6$

Filtering methods: LCTF

VarisPec Tunable Imaging Filter (*Cambridge Research, Inc.*)

Acousto Optic Tunable Filter

An RF signal applied to a piezo-electric transducer, bonded to a suitable crystal will generate an acoustic wave.

 Any incident light ray will be diffracted. The wavelength of the 1st order diffracted ray depends on the acoustic frequency.

- ☺ Usable wavelengths: 0.4-5.1µm
- © Spectral resolution: 0.7nm
- @400nm to 10nm @ 1000nm② μs access time to a wavelength
- © Random or sequential access to any wavelength

Filter limited to about one octave
AOTF are polarisation sensitive
Small active aperture of crystal
Cost

Filtering Methods: AOTF

RF generator

- Generates an RF signal with the proper frequency and power to drive the AOTF crystal.
- Based on a Direct Digital Synthesizer circuit and two cascaded monolithic RF amplifiers.

G&H VIS laboratory setup imaging

Brimrose optical system

Brimrose optical system

Output filtered light

VNIVERSITAT IDÖVALÈNCIA

Brimrose AOTF

VNIVERSITAT IDÖVALÈNCIA

OSTF (Isomet)

CONTENTS

Problem definition

- Filtering methods
- Sensors
- Data processing issues
- Applications
- Future trends

Solid-state	e detector	s for EM-	radiation							
h ^v [eV]	1e7 1	e6 1e5	1e4 1	e3 100	10 1	0.1 0.0	l 1e-3 1e-	4 le-5 le-6	1e-7 1e-8	
v[Hz]	1e21	1e20 1	e19 1e18	lel7 lel	6 le15 le	14 le13	1 THz lell	1e10 1GHz	т <u>—</u> т— т	-
λ[m]	1e-13 1	e-12 1e-1	1 1e-10 11	nm 10nm	100nm 1um	10um 100	um 1mm 1c	m 10cm 1m	10m 100m	n
		γ	х	U.V.	infr visible	ared far infrar		wave TV ra radar	adio	
Backside illumination Phosphorescent screens On visib <mark>e light consore</mark> De land gap semiconductors (PV, PR)										
P-I-N diodes photoelectric effect in heterojunctions impurity band transitions (extrinsic semiconductors) bolometers microwave mixers)			
								heterody	ning	

Few photons get to the sensors

Intensified technologies:

Hyperspectral imaging: sensors, algorithms and challenges

Sensors: Intensified technologies. ICCD

CCD plus image intensifier fibre-optically coupled Spectral sensitivity depending of the photocatode High voltage for accelerating electrons Pulse amplifier for gated intensifier

- Delft Electronic Products
- Intevac
- Hamamatsu (10,000 €)
- Proxitronic

Sensors: Intensified technologies. EBCCD

Hybrid of an image intensifier and a CCD camera Electrons impact on the back side of a back thinned CCD

- EB-CCD N7640 Hamamatsu (640x480)

 - Frame rate
- EBAPS Intevac

60 Hz interlaced

Sensors: Intensified technologies. L3CCD

Applies gain to the signal charge prior to the output node. This effectively reduces the magnitude of the read out noise

E2V Technologies CCD87 (512x512) Spectral range ... 400–1060nm Fill factor 100% Frame rate 30 Hz TI TC253SPD (680x500) High Uniformity from DUV to NIR Frame rate 30 Hz

Sensors: Intensified technologies

ICCD

- Much higher gain than EBCCD
- Spectral range depending on selected photocatode
- Reducing average contrast
- Gated intensifier needs pulse amplifier and high voltage power supply
- Noise factor due to MCP
- Image intensifier are "lifed" items (function of the faceplate illumination)
- Significant phosphor lag, improves SNR at the expense of DR
- Saturated even with modest light levels
- Image intensifier can be damaged by high light overloads
 EBCCD
- ✓ Gain means speed
- Relatively low noise (40 e-/ pixel)
- No Lag, No distortion
- Better spatial resolution and SNR at moderate light levels than ICCD
- DR limited for increased gain
- Modest low light level detection capability (gain not as high as ICCD)
- Very expensive (around 16000 \$)

LLLCCD

- CCD working at very different light conditions without image intensifier (three different modes)
- ✓ No risk of hardware damage due to overexposure
- ✓ Spatial resolution is the same as for an standard CCD and not reduced by a photocathode or MCP
- ✓ Price not so high (4,500 € for front illuminated)
- Higher SNR than ICCDs and CCDs (at low light levels)
- High voltage clock (more electronics involved)
- Degradation of QE in High Gain Mode
- Dark current electrons are amplified above the readout noise (cooling possibly needed)

Foveon X3[®] Capture

A Foveon X3 direct image sensor features three separate layers of pixel sensors embedded in silicon.

Since silicon absorbs different wavelengths of light at different depths, each layer records a different color. Because the layers are stacked together, all three colors are captured.

As a result, only Foveon X3 direct image sensors capture red, green, and blue light at every pixel location.

Mosaic Capture

In conventional systems, color filters are applied to a single layer of pixel sensors in a tiled mosaic pattern.

The filters let only one wavelength

of light-red, green, or blue-pass

through to any given pixel location,

allowing it to record only one color.

As a result, mosaic sensors capture only 25% of the red and blue light, and just 50% of the green.

Foveon Image Sensors: Samples

VISGaAs sensors: Indigo and FLIR

InGaAs: 0.9 – 1.7 μm VisGaAs: 0.4 – 1.7 μm InGaAs and VisGaAs Photon Relative Spectral Response

VNIVERSITAT

- Camera characteristics:
 - Cost-effective sensor for commercial applications
 - Provide up to 6 electronically configurable spectral bands

SmartSpectra project

- Spectral resolution: 5-50 nm
- Spatial resolution: 640 x 480
- Wide spectrum range: 400-1800nm

Hyperspectral imaging: sensors, algorithms and challenges

LÊNCIA

Autonomous Tunable Filter System ATFS

VNIVERSITAT DOVALENCIA

CONTENTS

Problem definition

- Filtering methods
- Sensors
- Data processing issues
- Applications
- Future trends

Hyperspectral sensors generate lots of data

Processing issues

- Is it manageable?
 - How to store them?
 - How to transmit them?
 - How to process them?
- Coregistration
- Comparison among sensors

Processing issues: Preprocessing

Figure 4.1: Design of a push-broom imaging spectrometer that shows its operation mode and the sources of the coherent spatial noise patterns.(Credit: figure based on an original of Barducci and Pippi (2001))

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Luis Gómez. UV-EEG

Processing issues: Preprocessing

Figure 4.2: Illustration of the correction of the drop-out errors based on the four-connected neighbors (*top*) and the vertical striping (*bottom*). Credits: Garcia and Moreno (2004).

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Luis Gómez. UV-EG

Processing issues: Preprocessing

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Luis Gómez. UV-EG

Processing issues: Band selection

- A priori knowledge
- Information theory

Processing issues: Band selection

Land surface classification with hyperspectral data

- System: Analysis of HyMap data for band selection
- Spectral Bands: 6 significant wavelengths (6 class problem) 500, <u>670</u>, <u>740</u>, 770, 1980, 2320nm

Processing issues: Band selection

Hughes Phenomenon

Processing issues: Band aggregation

From Martinez-Uso at altii ICIAR 2008

Processing issues: Segmentation

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Filiberto Pla, UJI

CONTENTS

Problem definition

- Filtering methods
- Sensors
- Data processing issues
- Applications
- Future trends

Applications: Remote Sensing

MERIS on Envisat					
		Ban d	Band centre (nm)	Bandwidth (nm)	Primary Use
 MERIS 15 		1	412.5	10	Yellow substance and detrital pigments
		2	442.5	10	Chlorophyll absorption maximum
	N N	3	490	10	Chlorophyll and other pigments
		4	510	10	Suspended sediment, red tides
		5	560	10	Chlorophyll absorption minimum
	B	6	620	10	Suspended sediment
		7	665	10	Chlorophyll absorption and fluo. reference
spectral		8	681.25	7.5	Chlorophyll fluorescence peak
bands		9	708.75	10	Fluo. Reference, atmospheric corrections
	1	10	753.75	7.5	Vegetation, cloud
		11	760.625	3.75	Oxygen absorption R-branch
		12	778.75	15	Atmosphere corrections
		13	865	20	Vegetation, water vapour reference
		14	885	10	Atmosphere corrections
	E	15	900	10	Water vapour, land

Applications: Remote sensing

Qualitative products in Moreton Bay. TSM = total suspended matter. CPC refers to cyanophycocyanin

Applications: Classification

- Two sugar beet leaves were acquired with the FR at the same time that the ATFS
- FR Spectrum compared to the integrated area in the AOTF image
- Absorption estimated from abaxial and adaxial leaf measurements

Hyperspectral imaging: sensors, algorithms and challenges

850 nm

550 nm (equallized for visualization)

Hyperspectral imaging: sensors, algorithms and challenges

Potato

Chlorophyll content estimate for a sunflower (Helianthus annuus) leaf, using the NDVI index (R800-R680)/(R800+R680), Courtesy: Joan Vila

Applications: Dermatology

• Requirements:

- Spectral range: 440 -750nm
- Bandwidth around 10nm
- Resolution > 500x500 pixels.
- SNR: > 50dB.

Skin cancer signs

Alphabet test

Checking for skin cancer can be as simple as a-b-c-d:

Asymmetry One-half unlike

the other half.

Border irregularity

Scalloped or poorly circumscribed.

Color varied

From one area to another.

Diameter

Source: American Cancer Society

Applications: Food processing automation

Fecal and ingesta detection on poultry carcases (U.S. Dept. of Agriculture)

- System: Three CCD (Monochrome) sensors with filters
- Spectral Bands: 3 spectral bands (470-960 nm) 445nm ⇒ deoxymyoglobin (DeoxyMb) 485nm ⇒ metmyoglobin (MetMb) 560nm ⇒ oxymyoglobin (OxyMb) 635nm ⇒ sulfmyoglobin (SulfMb) 465, 575, 705 nm ⇒ skin tumors

- Speed: Real time (90 birds/min. ~ 2im./sec)
- Implications: Significant wavelengths required (Imspector)

Applications: Precision agriculture

• Imaging is evolving from few bands to many bands

- Remote sensing pioneered the field, shy industrial penetration
- More sensitive sensors pave the way to extension
- Synergy with different sensors
- New processing algorithms will be required

Monochrome

RGB

Multispectral

Hyperspectral

Future

Ultraspectral

