ENICS 2008 Invited Speech

Hyperspectral imaging: sensors, algorithms and challenges

Dr. Javier Calpe-Maravilla GPDS - Department of Electronics Engineering IPL Imaging Processing Laboratory Analog Devices Design Center - Spain

CONTENTS

Problem definition

- **Filtering methods**
- **Sensors**
- **Data processing issues**
- **Applications**
- **Future trends**

PixelFly monochrome CCD camera Spectral Response of a CMOS Sensor with RGB CFA

Problem definition

Vniver§itat
idöValència

Hyperspectral imaging: sensors, algorithms and challenges

VNIVERSITAT
IDÖVALENCIA

Imaging Spectrometry Concept

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Rob Green, JPL

Problem definition: Image formation

CONTENTS

Problem definition

- **Filtering methods**
- **Sensors**
- **Data processing issues**
- **Applications**
- **Future trends**

Filtering methods: Point spectrometer

Analytical Spectral Devices, Inc. FieldSpec Pro FR

Tri-CCD to Bayer pattern

Mosaic Capture

In conventional systems, color filters are applied to a single layer of pixel sensors in a tiled mosaic pattern.

The filters let only one wavelength of light-red, green, or blue-pass through to any given pixel location, allowing it to record only one color.

As a result, mosaic sensors capture only 25% of the red and blue light, and just 50% of the green.

ImSpector from Specim, Inc

Filtering methods

FPAwith spectral filter wheel

IMAGE SCENE

Multiple FPAs with spectral separation elements

Multiple FPAs with spectral separation elements

Effective Camera Response Bands

FluxData FD-1665 3CCD Multispectral Cameras

Hyperspectral imaging: sensors, algorithms and challenges

IDOVALENCIA

Filtering methods: LCTF

Liquid Crystal Tunable Filter

Formed by a stack of polarizers and tunable retardation liquid crystal plates

Combining the transmission of all the plate only a narrow band can be transmitted

Changing the bandpass is very fast (~50 ms)

 $T_{\text{Total}} = T_1 * T_2 * T_3 * T_4 * T_5 * T_6$

VNIVERSITAT)öValència

Filtering methods: LCTF

VarisPec Tunable Imaging Filter (*Cambridge Research, Inc*.)

Acousto Optic Tunable Filter

An RF signal applied to a piezo-electric transducer, bonded to a suitable crystal will generate an acoustic wave.

Any incident light ray will be diffracted. The wavelength of the 1st order diffracted ray depends on the acoustic frequency.

- \odot Usable wavelengths: 0.4-5.1 μ m
- \odot Spectral resolution: 0.7nm
- @400nm to 10nm @ 1000nm \odot µs access time to a wavelength
- Random or sequential access to any wavelength
- Filter limited to about one octave AOTF are polarisation sensitive \odot Small active aperture of crystal ම Cost

Filtering Methods: AOTF

RF generator

- **Generates an RF signal with the proper frequency and** power to drive the AOTF crystal.
- **Based on a Direct Digital Synthesizer circuit and two** cascaded monolithic RF amplifiers.

G&H VIS laboratory setup imaging

Hyperspectral imaging: sensors, algorithms and challenges

Brimrose optical system

Brimrose optical system

Output filtered light

Brimrose AOTF

VNIVERSITAT
IDÖVALENCIA

OSTF (Isomet)

CONTENTS

Problem definition

- **Filtering methods**
- **E** Sensors
- **Data processing issues**
- **Applications**
- **Future trends**

Few photons get to the sensors

Intensified technologies:

Sensors: Intensified technologies. ICCD

CCD plus image intensifier fibre-optically coupled Spectral sensitivity depending of the photocatode High voltage for accelerating electrons Pulse amplifier for gated intensifier

- **Delft Electronic Products**
- **Intevac**
- Hamamatsu (10,000 €)
- **Proxitronic**

Sensors: Intensified technologies. EBCCD

Hybrid of an image intensifier and a CCD camera Electrons impact on the back side of a back thinned CCD

- EB-CCD N7640 Hamamatsu (640x480)
	- ▶ Spectral range 370–920 nm
	- ► Frame rate 60 Hz interlaced
- **ERAPS** Intevac

Sensors: Intensified technologies. L3CCD

Applies gain to the signal charge prior to the output node. This effectively reduces the magnitude of the read out noise

E2V Technologies CCD87 (512x512) Spectral range . . . 400–1060nm Fill factor 100% Frame rate 30 Hz TI TC253SPD (680x500) High Uniformity from DUV to NIR Frame rate 30 Hz

Sensors: Intensified technologies

ICCD

- $\sqrt{}$ Much higher gain than EBCCD
- Spectral range depending on selected photocatode
- **x** Reducing average contrast
- Gated intensifier needs pulse amplifier and high voltage power supply
- Noise factor due to MCP
- Image intensifier are "lifed" items (function of the faceplate illumination)
- **x** Significant phosphor lag, improves SNR at the expense of DR
- **x** Saturated even with modest light levels
- ***** Image intensifier can be damaged by high light overloads

EBCCD

- Gain means speed
- $\sqrt{}$ Relatively low noise (40 e-/ pixel)
- No Lag, No distortion
- \checkmark Better spatial resolution and SNR at moderate light levels than ICCD
- **x** DR limited for increased gain
- Modest low light level detection capability (gain not as high as ICCD)
- Very expensive (around 16000 \$)

LLLCCD

- \checkmark CCD working at very different light conditions without image intensifier (three different modes)
- \checkmark No risk of hardware damage due to overexposure
 \checkmark Spatial resolution is the same as for an standard C
- Spatial resolution is the same as for an standard CCD and not reduced by a photocathode or MCP
- \checkmark Price not so high (4,500 \in for front illuminated)
- \checkmark Higher SNR than ICCDs and CCDs (at low light levels)
- ***** High voltage clock (more electronics involved)
- Degradation of QE in High Gain Mode
- Dark current electrons are amplified above the readout noise (cooling possibly needed)

Foveon X3[®] Capture

A Foveon X3 direct image sensor features three separate layers of pixel sensors embedded in silicon.

Since silicon absorbs different wavelengths of light at different depths, each layer records a different color. Because the layers are stacked together, all three colors are captured.

As a result, only Foveon X3 direct image sensors capture red, green, and blue light at every pixel location.

Mosaic Capture

The filters let only one wavelength

of light-red, green, or blue-pass

through to any given pixel location,

allowing it to record only one color.

As a result, mosaic sensors capture only 25% of the red and blue light, and just 50% of the green.

Foveon Image Sensors: Samples

VISGaAs sensors: Indigo and FLIR

InGaAs: 0.9 – 1.7 µm VisGaAs: 0.4 – 1.7 µm InGaAs and VisGaAs Photon Relative Spectral Response

Vniver§itat
idöValència

SmartSpectra **project**

- Camera characteristics:
	- Cost-effective sensor for commercial applications
	- Provide up to 6 electronically configurable spectral bands
	- Spectral resolution: 5-50 nm
	- Spatial resolution: 640 x 480
	- Wide spectrum range: 400-1800nm

Autonomous Tunable Filter System ATFS

CONTENTS

Problem definition

- **Filtering methods**
- **Sensors**
- **P Data processing issues**
- **Applications**
- **Future trends**

Hyperspectral sensors generate lots of data

Processing issues

- **Is it manageable?**
	- How to store them?
	- How to transmit them?
	- How to process them?
- **Coregistration**
- **Comparison among sensors**

Processing issues: Preprocessing

Figure 4.1: Design of a push-broom imaging spectrometer that shows its operation mode and the sources of the coherent spatial noise patterns. (Credit: figure based on an original of Barducci and Pippi (2001))

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Luis Gómez. UV-EEG

Processing issues: Preprocessing

Figure 4.2: Illustration of the correction of the drop-out errors based on the four-connected neighbors (top) and the vertical striping (bottom). Credits: Garcia and Moreno (2004).

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Luis Gómez. UV-EG

Processing issues: Preprocessing

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Luis Gómez. UV-EG

Processing issues: Band selection

- **A priori knowledge**
- **Information theory**

Processing issues: Band selection

Land surface classification with hyperspectral data

- **System: Analysis of HyMap data for band selection**
- **Spectral Bands: 6 significant wavelengths (6 class problem) 500, 670, 740, 770, 1980, 2320nm**

Processing issues: Band selection

Hughes Phenomenon

Processing issues: Band aggregation

From Martinez-Uso at altii ICIAR 2008

Processing issues: Segmentation

Hyperspectral imaging: sensors, algorithms and challenges

Courtesy Filiberto Pla, UJI

CONTENTS

Problem definition

- **Filtering methods**
- **Sensors**
- **Data processing issues**
- **Applications**
- **Future trends**

Applications: Remote Sensing

Applications: Remote sensing

Qualitative products in Moreton Bay. TSM = total suspended matter. CPC refers to cyanophycocyanin

Applications: Classification

- Two sugar beet leaves were acquired with the FR at the same time that the ATFS
- FR Spectrum compared to the integrated area in the AOTF image
- Absorption estimated from abaxial and adaxial leaf measurements

Hyperspectral imaging: sensors, algorithms and challenges

550 nm (equallized for visualization) 850 nm

Potato

Chlorophyll content estimate for a sunflower (Helianthus annuus) leaf, using the NDVI index (R800-R680)/(R800+R680), Courtesy: Joan Vila

Applications: Dermatology

Requirements:

- Spectral range: 440 750nm
- Bandwidth around 10nm
- Resolution > 500x500 pixels.
- SNR: > 50dB.

Skin cancer signs

Alphabet test

Checking for skin cancer can be as simple as a-b-c-d:

Asymmetry

One-half unlike the other half.

Border irregularity

Scalloped or poorly circumscribed.

Color varied

From one area to another

Diameter

Source: American Cancer Society

Applications: Food processing automation

Fecal and ingesta detection on poultry carcases (U.S. Dept. of Agriculture)

- **System: Three CCD (Monochrome) sensors with filters**
- **Spectral Bands: 3 spectral bands (470-960 nm) 445nm ⇒ deoxymyoglobin (DeoxyMb) 485nm ⇒ metmyoglobin (MetMb) 560nm oxymyoglobin (OxyMb) 635nm ⇒ sulfmyoglobin (SulfMb) 465, 575, 705 nm ⇒ skin tumors**

- **Speed: Real time (90 birds/min. ~ 2im./sec)**
- **Implications: Significant wavelengths required (Imspector)**

Applications: Precision agriculture

• **Imaging is evolving from few bands to many bands**

- **Remote sensing pioneered the field, shy industrial penetration**
- **More sensitive sensors pave the way to extension**
- **Synergy with different sensors**
- **New processing algorithms will be required**

Monochrome

RGB

Multispectral

Hyperspectral

Future

Ultraspectral

