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 Capture and learn the subtle nuances of human perceptions and 

deep knowledge for searching

 Develop an architectural paradigm enables indexes to evolve 

naturally while accommodating the dynamic changes of user 

interests

 Enable progressive improvement in search performance over 

time

 Use a reinforcement learning framework based on Markov 

Decision Process

 Prevent local optimum and use evolutionary exploration 

strategies which balance exploitation and exploration in 

reinforcement learning

Motivation & Overview
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 Computer vision
 Too slow to deliver

 Dedicated intensive manual indexing infeasible
 Fast creation and slow indexing

 Ratecreation >>  Rateindexing

Text Document
Build Index 

Direct

Multimedia

Annotations

Build Index
?

The Multimedia Data Extraction and 
Indexing Problem
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 Unlike text-based data, no automatic algorithms available for 
effectively extracting information from multimedia data

 Velocity mismatch: the speed of creation of multimedia data is orders 
of magnitude faster than the creation of text-oriented data

Example:

 “Les Misérables” by Victor Hugo

Challenges of Multimedia Data 
Compared with Text-oriented Data

One Image 

by smart Phone
Entire E-book

File size 2~3 MB
About 2.1 MB

(530,982 Text words)

Time taken < 1 second
1815~1832

> 10 years
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 Meaningful 

interpretation of the 

objects in the picture 

constitutes a significant 

semantic element, and 

requires deep 

knowledge  based on 

prior familiarity with the 

subject matter

 Mere visual description 

of image objects is 

insufficient
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Semantic and Deep Knowledge 
Queries

Samson & Delilah

Moses & 10 

Commandments
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 Several hundred attributes (genes) are used 

to characterize songs, such as

 Tempo, Key, Harmony

 Melody, Rhythm, Syncopation

 Piano block chord, octave guitar, 

oboe+flute, etc.

 Mere descriptions of song title, performer, 

lyrics are insufficient to satisfy semantic 

queries

 Effective music search can make use of any 

combination of these attributes, and such 

subtleties and nuances may be learned and 

indexed collaboratively based on 

reinforcement learning principles
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Music Genome



 Correct identification of foreign military 

installations requires expert knowledge

 Weapons of mass destruction

 Nuclear facilities

 Enables military commanders in to identify 

bombing targets, locate and track enemy forces, 

determine the extent and strengths of fortifications

 President Eisenhower in 1961 originally started the 

US National Photographic Interpretation Center

(NPIC) 

 During World War II, the US Army Air Forces built a 

formidable capability to collect, analyze, and disseminate 

photographic intelligence

 Cuban Missile Crisis

 The functions of NPIC have since been absorbed into the 

National Geospatial-Intelligence Agency (NGA)
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Expert Knowledge from Imagery 
Intelligence



 A Self-Learning Search Engine (SLSE) is a multimedia search engine 

that continuously learns and evolves to adapt its answer lists to queries 

submitted by users

 When a user submits a query Q, the search engine takes a hybrid 

evolutionary exploration strategy to construct and present a result 

retrieval list of M objects M_List to the user for evaluation

Self-Learning Search Engine
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 Dynamic indexing is an indexing technique that dynamically builds 

semantic indexes to associate query terms with multimedia objects

 New query terms are dynamically constructed as indexes for desired 

objects, and existing indexes are able to be deconstructed according to 

demand

 The relevance score of an index continuously changes during the 

process

Dynamic Indexing
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 SLSE creates a learning function between the object space and the 

query Q to measure the relevance liaison: 

 where T is the space of query terms that represents the input query Q, 

and O is the object space

 The learning function takes the form

 The output of the function is the set of non-negative real numbers r that 

specify the corresponding relevance with 0 indicating complete 

irrelevance

 At the beginning, all RIV scores are initialized by the system; later in 

the usage, the learning function takes the results of the reward function 

as input to update pertinent RIV scores iteratively

Relevance Index Value (RIV)
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 Represented as a Markov Decision Process with five tuple

 with the respective components of state space, action space, 

transition kernel, reward function, and discount factor

 Action Space: consists of a series of actions that the agent 

selects M objects to form an M-List and presents to the user

 State Space: a set of all indexes in the dynamic indexing 

component, including the explored and unexplored ones 

together with their RIVs 

 For unexplored indexes, their RIV are below a pre-defined 

threshold h > 0, while for explored indexes, their RIV are at or 

above it

Markov Decision Process

12



Learning Based Architecture

X

Net Positive Rewards

 After taking a particular action, RIV scores change accordingly, 

causing a corresponding state transition in the system

 The long-term goal of SLSE is to expose unexplored indexes for 

retrieval, and reward will be the net change in the total RIV scores as 

a result of an action
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 When a user submits a query Q, the search engine constructs a set of 

MQ objects, which is a set containing M objects called M-List, and 

present it to the user for evaluation

 Each object will have a relevance score with respect to the query, and 

those objects with the highest relevance scores will be selected for 

inclusion in the M-List

⇒ Objects with high RIV will be shown repeatedly for user 

evaluation

 The RIV of these objects tends to keep increasing even though they 

may not be the most relevant as these are selected as relevant 

(clicked) by the users

 The most relevant objects may not stand any chance of having their 

RIV increased since they are not shown to the users for evaluation

 Local optimum problem

 objects that have the highest RIV may not in fact be the most 

relevant

Pure Exploitation Search
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Departure from Pure Exploration Search

 The candidate returned objects MQ for the M-List

of Q should not be just consisting of those objects 

having the highest relevance score

 The M-List should aim to contain two categories of 

objects:

 a K-object subset Oa that has the highest 

cumulative RIV scores from exploitation, and 

 a subset Ob of random objects selected for 

exploration, i.e.

MQ = Oa ∪ Ob
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ε-Greedy Search

 In the case of pure exploitation search, we have 

|Oa| = K = M

|Ob| = 0

 Since |Oa| = M would risk landing in a local 

optimum for the query Q, we wish to strike a 

balance between exploitation and exploration 

⇒ Design the M-List in such a way that

|Oa| < M

|Ob| > 0
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ε-Greedy Search

 Here, we assume that the ordering of objects within the M-list is 

unimportant, and repeated sequential presentations of the M-list 

in response to the given query Q (mostly likely from different 

users) are denoted by the M1, M2, M3, …, where Mi signifies the 

ith M-list presented for the query Q

 For 0 < ε < 1, we let r = εM, and K=(1-ε)M

 i.e. we include r randomly chosen objects in the M-list, 

where each available object apart from the K objects from 

exploitation is chosen with equal probability

 Without jeopardizing the performance of the search system, we 

in general use a small value for ε, and in this study we take ε < 

15%

|Oa| = K > 0.85M

|Ob| = r  < 0.15M
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ε-Greedy Algorithm A

 When a given 

random object Z 

has been included 

in a previous M-list 

presentation, it can 

be re-selected for 

inclusion in a 

subsequent M-list 

presentation in the 

exploration process 

 Advantage: Greater 

fault-tolerance –

the most relevant 

object can be 

shown again
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 Let X be the multimedia object that is most relevant to the query Q, but 

its current RIV is not sufficient for inclusion in Oa

 Let Ur,M the random variable signifies the time to discover X for the first 

time; we have

ℙ 𝑼𝒓,𝑴 = 𝑘 = α𝑟,𝑀β𝑟,𝑀
𝑘−1,

where 

α𝑟,𝑀 =

𝑁−𝑀+𝑟−1
𝑟−1

𝑁−𝑀+𝑟
𝑟

,

and αr,M + βr,M = 1

 The corresponding probability generating function is given by

𝐹 𝑧 =
α𝑟,𝑀𝑧

1 − β𝑟,𝑀𝑧
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Performance of EGSE-A



 The mean and variance of Ur,M can be obtained by differentiation

Performance of EGSE-A
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E 𝑼𝒓,𝑴 =

𝑁−𝑀+𝑟
𝑟

𝑁−𝑀+𝑟−1
𝑟−1

Var 𝑼𝒓,𝑴

=

𝑁−𝑀+𝑟
𝑟

2

𝑁−𝑀+𝑟−1
𝑟−1

2 ×

𝑁−𝑀+𝑟
𝑟

− 𝑁−𝑀+𝑟−1
𝑟−1

𝑁−𝑀+𝑟
𝑟



ε-Greedy Algorithm B

 When a given 

random object Z 

has been included 

in a previous M-list 

presentation, it is 

excluded in a 

subsequent M-list 

presentation in the 

exploration process 

 Advantage: Greater 

efficiency in the 

speed of discovery
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 We denote by fr,M,, k the following first passage probability

𝑓𝑟,𝑀,𝑘 = ℙ 𝑋 ∈ 𝑀𝑘 ∶ 𝑋 ∉ 𝑀1, … , 𝑋 ∉ 𝑀𝑘−1

 For k = 3, we have

𝑓𝑟,𝑀,3 = ℙ 𝑋 ∈ 𝑀3 ∶ 𝑋 ∉ 𝑀1, 𝑋 ∉ 𝑀2

=

𝑁−𝑀+𝑟−1
𝑟

𝑁−𝑀+𝑟
𝑟

×

𝑁−𝑀−1
𝑟

𝑁−𝑀
𝑟

×

𝑁−𝑀−𝑟−1
𝑟−1

𝑁−𝑀−𝑟
𝑟
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Performance of EGSE-B



 The general recurrence relationship for 𝑓𝑟,𝑀,𝑘 can be seen to be

𝑓𝑟,𝑀,𝑘+1 = 𝑓𝑟,𝑀,𝑘 ×

𝑁−𝐾−𝑘𝑟
𝑟

𝑁−𝐾−𝑘𝑟−1
𝑟−1

×

𝑁−𝐾−𝑘𝑟−1
𝑟

𝑁−𝐾−𝑘𝑟
𝑟

×

𝑁−𝐾−(𝑘+1)𝑟−1
𝑟−1

𝑁−𝐾−(𝑘+1)𝑟
𝑟

,

where the second factor serves to remove the successful inclusion 

probability in  fr,M,, k, and then replace this success probability by a 

failure to include X probability, which is the third factor. The final factor 

gives the successful inclusion probability at the (k+1)th presentation 

after k failed attempts to include X before
23

Performance of EGSE-B



 Solution of the above yields the mean and variance of 𝑽𝒓,𝑴, 

which is the random variable signifying the discovery of X for the 

first time

E 𝑽𝒓,𝑴 =
𝑁 − 𝑀 + 2𝑟

2𝑟

Var 𝑽𝒓,𝑴 =
1

12
{[

𝑁 − 𝑀 + 𝑟

𝑟
]2 − 1}
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Performance of EGSE-B



Experimental Evaluations

Expected Discovery Time of EGSE-A

Settings: N = 10,000, M = 100
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Expected Discovery Time of EGSE-B. 
Settings: N = 10,000, M = 100,  ε = 0.1. 

Sample Images from Dataset



Experimental Evaluations
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Final Returned M-List of “grand piano” using EGSE-A
Settings: N = 1,000, M = 50, ε = 0.1

Note that the correct result is retrieved even 

though it is incorrectly labeled as “guitar”



Experimental Evaluations

Distribution of RIV Scores
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Experimental Evaluations
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Distribution of Initial RIV Scores for 

Each Category (EGSE-B)



Experimental Evaluations

Distribution of RIV Scores for Each 

Category when Hidden Object X is 

Discovered (EGSE-B)
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Evolution of Query Precision against 

Query Time



Experimental Evaluations

Expected Discovery Time of EGSE-A

Settings: N = 10,000, M = 100
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Experimental Evaluations
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Expected Discovery Time of EGSE-B. 
Settings: N = 10,000, M = 100,  ε = 0.1. 



Experimental Evaluations

Expected Discovery Time of EGSE-B with 

ε = 0.12, 0.13
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Experimental Evaluations
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Probability of discovering the most relevant 

object in EGSE-B with time constraints



 Pure exploitation strategy can risk landing in a local 

optimum

 The ε-greedy strategy allows a balance between 

exploration and exploitation and avoids the local optimum 

problem

 EGSE-A, which has the advantage of having greater fault-

tolerant

 EGSE-B, which has the advantage of sweeping the entire 

search space rapidly

Advantages
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 In a SLSE, it is important to be assured that the 

learning process will eventually lead to the correct 

terms being indexed

 Let X(t) be the number of times that an unexplored 

index is being indexed (i.e. receive reinforcement) 

in the time interval (0, t), with Pr[X(t, t+ε) > 1] = o(ε)

Learning Convergence
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 Let dX(t) denote the number of times the unexplored 

index is indexed in the time interval (t, t+dt), and a(t) = 

E[dX(t)]/dt

 The value of a(t) depends on actual usage, popularity 

and indexing frequency of the search engine

 Very often the point process is taken to be a stationary 

non-homogeneous process, and if further the point 

events are uncorrelated, we can take the probability that 

the unexplored index remaining unexplored in the time 

interval (0, t) to be exp(−αt)

Learning Convergence Behavior
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 Let St be the number of unexplored indexes in the system at time t, 

then it can be shown that

 Since the average of St → 0 as t → ∞, this indicates eventually the 

entire collection of unexplored indexes will be fully discovered

Learning Convergence Behavior
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 Let Ts denote the expected time spent on indexing a proportion 

p of unexplored indexes 

⇒ the proportion of exposed explored indexes during a time 

interval Ts is

Learning Convergence Behavior
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Learning Convergence Behavior

E(St)                                                                  p

S0 = 500,000                                                                  
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Learning Convergence Behavior

S0 = 6,000,000                                                                  

E(St)                                                                  p
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Experimental Evaluations

(a) S0=60,000, λ=8,000, α=1/15 

Changes of remaining unexplored indexes

λ = Poisson feedback rate

Green dotted line corresponds to simulation. Green line corresponds to theoretical results
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Experimental Evaluations

(b) S0=500,000, λ=50,000, α=1/20 

Changes of remaining unexplored indexes

λ = Poisson feedback rate

Green dotted line corresponds to simulation. Green line corresponds to theoretical results
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Experimental Evaluations

(c) S0=500,000, λ=67,000, α=1/15 
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Experimental Evaluations

(d) Overview of no. of clicks when converged
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 By applying reinforcement learning to a Self-Learning Search 

Engine within a Markov decision process framework, the subtle 

nuances of human perceptions and deep knowledge are 

gradually captured and learned 

 Semantic indexes are built dynamically to interconnect search 

terms with the most relevant media entities and achieves steady 

improvements in search performance over time

 Learning convergence will be eventually achieved in the course 

of normal usage, indicating that the Self-Learning Search 

Engine architecture based on reinforcement learning is able to 

confer distinct advantages.

Conclusion
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