

Detecting Suicide Risk Through Twitter

Javier Fabra¹, Ana B. Martínez-Martínez², Yolanda López-Del-Hoyo³, María C. Pérez-Yus³, Bárbara Oliván-Blázquez³

Contact email: <u>ifabra@unizar.es</u>

Department of Computer Science and Systems Engineering
Faculty of Health Sciences
Department of Psychology and Sociology
Universidad de Zaragoza, Spain

About the presenter...

Javier Fabra

Email: <u>jfabra@unizar.es</u>

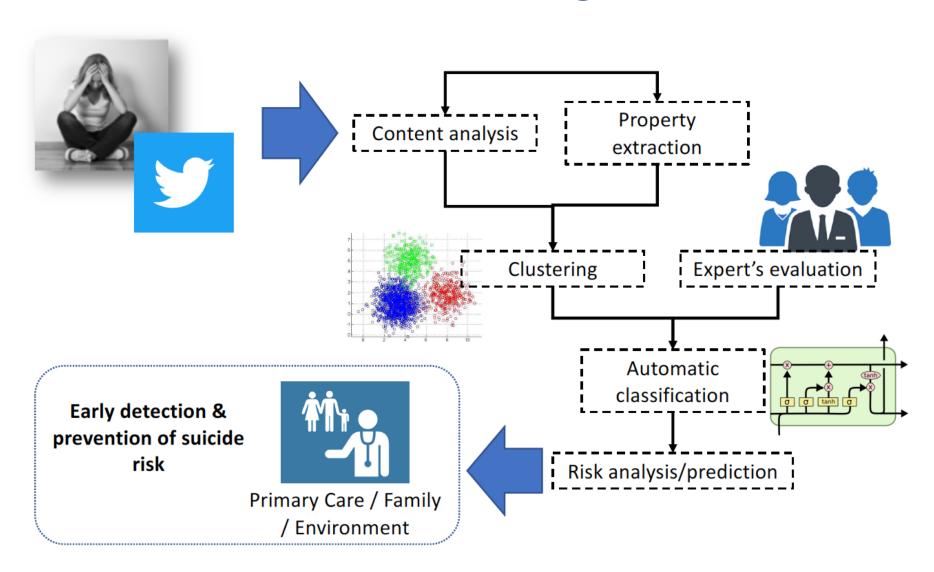
Associate Professor in the Department of Computer Science and Systems Engineering at the University of Zaragoza, Spain

- eHealth systems & services
- Data analysis & process mining
- Service-oriented computing
- Cloud architectures

Outline

- Context
- Methodology
- Tweet identification
- Classification of suicide risk groups
- Automatic classification
- Conclusions

Context

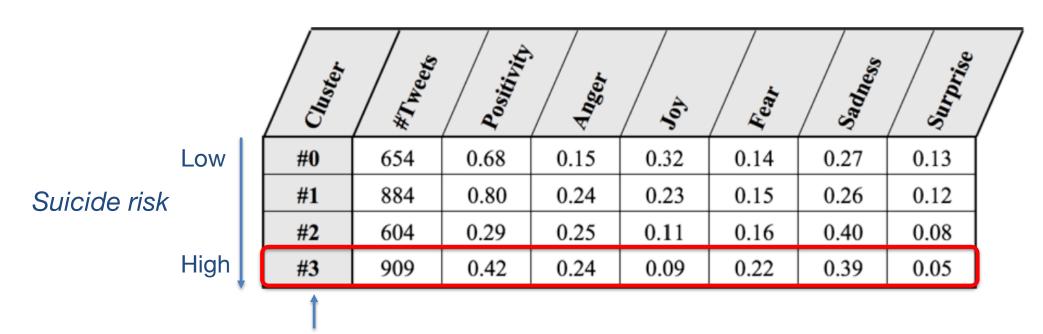

- Mental illness is one of the main causes of illness worlwide
 - Depression affects over 300m people (WHO)
- Suicide is one of the more controversial causes of death
 - In Spain represents the main cause of unnatural death, doubling the number of deaths in traffic accidents
- Social platforms can be used to analyse the emotional state of people
 - Sometimes is an anonymous media
 - Exposes real-time data
- Twitter is one of the most widely used social media platforms worldwide
 - In this work, we focus on Tweets written in Spanish (note that the methodology can be applied to other languages)

9

Context

- We propose a framework for the detection of suicide risk through Twitter
 - Retrieval of selected Tweets according to specific rules and classifications
 - Analysis of Tweet collections processing of information flows (streams) in real time
 - Application of clustering and machine learning techniques that facilitate the automatic classification of the information obtained
 - In base to the classification, triggering of corrective/prevention mechanisms
- Our approach represents a full framework...
 - Engineered and implemented using different technologies
 - Structured around a multidisciplinary team of professionals in Health Sciences and IT
 - As a result, it provides a useful prototype for suicide prevention and detection of real emotional states in the population

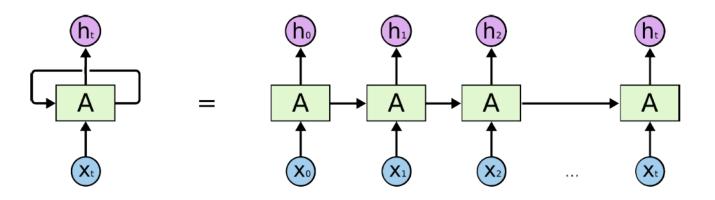
Methodology


Tweet identification

- Large vocabulary of emotional terms compiled from different sources
 - The Spanish adaptation of Affective Norms for English words (ANEW)
 - Spanish dictionary of the Linguistic Inquiry and Word Count (LIWC)
- Addition of emotional properties (primary + secondary)
 - Hierarchy of emotions (Parrott, 2001)
 - Tree of emotions (Shaver et al., 1987)
 - We have integrated the Indico affective and emotional text processing tool as a service
- The Amazon Web Service (AWS) infrastructure has been used to deploy the framework

Classification of suicide risk groups

- Clustering techniques
 - K-means + elbow method
 - Knime data analytics platform
 - Input: 3051 Tweets


 A team of experts in Health Sciences and Medicine reviewed the data & results

Automatic classification

LSTM neural network

- Tensorflow machine learning framework
- 10 LSTM hidden layers / 20 neurons in each layer
- 70% training data / 30% test data

Layer (type)	Output Shape	Param #
 lstm_1 (LSTM)	(None, None, 20)	2160
lstm_2 (LSTM)	(None, None, 20)	3280
lstm_3 (LSTM)	(None, None, 20)	3280
lstm_4 (LSTM)	(None, None, 20)	3280
lstm_5 (LSTM)	(None, None, 20)	3280
lstm_6 (LSTM)	(None, None, 20)	3280
lstm_7 (LSTM)	(None, None, 20)	3280
lstm_8 (LSTM)	(None, None, 20)	3280
lstm_9 (LSTM)	(None, None, 20)	3280
lstm_10 (LSTM)	(None, 20)	3280
dense_1 (Dense)	(None, 1)	21

Total params: 31,701 Trainable params: 31,701 Non-trainable params: 0

Automatic classification

• The evaluation function returns an accuracy of 93.34% (K=4)

	C0	C 1	C2	C3
C0	191	1	1	0
C 1	1	267	1	0
C2	4	1	151	16
C3	0	24	12	246

Success rate (Cluster 0) = 98.96%

Success rate (Cluster 1) = 99.26%

Success rate (Cluster 2) = 87.79%

Success rate (Cluster 3) = 87.23%

Conclusions

- We have presented a framework for the detection of suicide risk through Twitter
 - Deployed using AWS
- Very satisfactory and promising results (accuracy of 93.34%)
- Currently we are working on the connection with Primary Care Services
- The techniques developed in this work are easily adaptable to other contexts and studies
- Possible improvements
 - Use of different distance functions for clustering/K-means
 - Use of different classification techniques (Random Forest, SVM, ..)

Detecting Suicide Risk Through Twitter

Javier Fabra¹, Ana B. Martínez-Martínez², Yolanda López-Del-Hoyo³, María C. Pérez-Yus³, Bárbara Oliván-Blázquez³

Contact email: <u>ifabra@unizar.es</u>

Department of Computer Science and Systems Engineering
Faculty of Health Sciences
Department of Psychology and Sociology
Universidad de Zaragoza, Spain